H3rtz.stdio
Report #2

Jean 7 Areas” Bou Raad
Kevin-Brian "KB” N’Diaye
Thanh Lam Nguyen ” Velellah”
Yabsira Alemayehu MULAT ”Yabs”

FASRARTZ.STDXO

Contents

0.1
0.2

0.3

0.4

0.5

0.6
0.7
0.8

Introduction Lo 3
PulseAudio back-end reworko 4
0.2.1 Imtroduction 4
0.2.2 Motivations 4
0.2.3 Structureso 4
0.2.4 Drain: a particular operation 6
0.2.5 States 8
0.2.6 Error handling 9
0.2.7 Forwarding/Rewinding 9
WAV encoding rework and improvements 11
0.3.1 Imtroduction L. 11
0.3.2 First version 11
0.3.3 Newwversion i 12
0.3.4 Conclusion 0o 14
MP3 Encodingo 14
0.4.1 Time-Frequency Filterbank 14
0.4.2 Analysis Subband Filter 14
0.4.3 Psycho-acoustic model 15
GUI: Graphic User Interface 26
0.5.1 Imtroduction 26
0.5.2 Information onsongs 27
0.5.3 Playlist 31
0.5.4 Conclusion e 37
Assignment tabular oL 38
Progressiono Lo 39
Conclusion Lo 40

0.1 Introduction

In this second report, we will present the main achievements of our team during
this second period. We learned from the first period, fixed major issues while
finishing up both the WAV codec and the GUI and started the core of MP3
encoding.

Now that we have better knowledge about audio decoding, we are more aware
of the difficulties that are to come.

The first part of our report will be about the extensive rework of the pulse-
audio backend and the WAV encoding. While they did their jobs correctly,
some issues made us rethink a few aspects. We can move on to the rest of the
project with solid foundations.

The second one will bring details on the implemented first and second phase of
the MP3 encoding. These parts are almost fully implemented. This part will
detail the steps and concepts around the implementation of the MP3 encoding.

Finally, the progress on user interface will be shown. The part showcases the
integration between the decoder and the UI, and the work done with the new
feature: the playlist.

0.2 PulseAudio back-end rework

0.2.1 Introduction

For the first defense, we provided a rough implementation of a PulseAudio back-
end. It can play raw audio on any computer. This part will explain the features
added to the previous iteration of this back end. We recommend reading our
first report to understand the big picture around this part of our project.

0.2.2 Motivations

Our previous implementation of PulseAudio was unstable for some tasks (e.g:
changing the position in an audio file).

Indeed, the audio back-end played corrupted audio if the offset computed was
not a multiple of the bit sampling size of the file. Also, if we changed the
offset while the player was draining, it would have caused a hard crash. Those
instances of bugs are only a few examples, and we will go through most of them
in the later parts of this report.

Finally, the best motivation for this rework was better thread safety with the
experience earned from the previous work.

0.2.3 Structures

After the first defense, we also realized that the structures linked to our back-end
were sometimes not coherent. Hence, we decided to move, add, remove some
attributes. Below, you can find some comparisons between the old structures
and the new ones:

1 typedef struct pa-player

-
wav_player xplayer; // modified: variable objects for backend
4 pa-objects spulseAudio; //modified: static objects
5 pa-info xinfo; // modified: for volume
6 state pa.state; // modified: global PulseAudio State
7 fileType type; // wav original or mp3
8 //pa-info *info; moved into another structure

9 //pa_time xutility; deleted, attributes moved to
10 } pa-player;

Figure 1: New structure definition of a PulseAudio player

S

-

10
11

// Per track data, will change over the program’s lifetime
typedef struct wav_player
{
wav xinfo; // contain header and data pointers for the file
played
file xtrack; // 1/O attributes
unsigned char *xdata; // points to the beginning of the audio
samples

pa_stream s*stream; // moved: Opaque PulseAudio object to launch

operations
drain xdrainer; // new: holds information about the draining
status

pa-time =xtiming; // new: position in the current file , latency

playerStatus status; // new: see enum
} wav_player;

Figure 2: New structure definition of a wav_player

// Static PulseAudio objects during the program’s lifetime
typedef struct pa_-objects
{
// removed stream object
pa-context xcontext;
pa_threaded_mainloop #*loop;
pa-mainloop_api xapi;
char *sink;
pa_server_info xserver;
} pa-objects;

Figure 3: New structure definition of pa_objects

In terms of organization, the main change is a rule applied: the dynamic objects

go in the wav_player structure, and the static ones go in the pa_objects.

It improves the quality of life while coding and allows more straightforward

incremental updates. The objects are not spread all over the place anymore.

0.2.4 Drain: a particular operation

When a player reaches the end of a track, the program needs to verify that the
audio server has played the samples. PulseAudio does not provide a function to
get that information. Instead, it provides a method that drains the buffer until
it is empty: pa_stream_drain'. This operation runs in the background, and the
deferred callback runs to send a signal to the main thread to unlock it. The
deferred callback runs after completion or error.

This scheme does not work if the drain starts and we try to rewind the audio in
the meantime. The thread would freeze and cause a crash because the operation
could not complete (no signal sent to unlock).

However, PulseAudio’s API’s developers knew that it could happen so the call-
back triggers with an error after a certain amount of time. It also causes a crash
because it should not happen.

To fix that problem, we preferred to cancel the operation asynchronously to
avoid triggering any assertion that would cause the program to crash.

To do so, we needed a structure to access the operation easily with other data.
You can find it below:

// Object used to track draining process

typedef struct drain

{
DrainStatus state; // enumeration: indicates if there is an
operation running
pa-operation xdrain; // the PulseAudio operation pointer to
cancel

} drain;

Figure 4: Structure definition of drain

The situation is as follows: the GUI in another thread calls the change of offset
function in the track. In the meantime, another thread is draining the audio
samples from the buffer. It is the process to cancel the operation:

1. Cancel the operation from the other thread using pa_operation_cancel, with
as reference the pointer in the drain structure?

2. Once canceled, send a signal to the main thread. It unlocks a refresh
concerning the state of the operation.

3. The main thread sees then that the operation is canceled. It will then
restore the player to its normal state and unlock the mainloop object.

lhttps://freedesktop.org/software/pulseaudio/doxygen/streams.html
2See fig. 4

https://freedesktop.org/software/pulseaudio/doxygen/streams.html

To illustrate these explanations, you can find below a simplified snippet of
code:

pa-threaded_mainloop_-lock (loop);

// starts a draining operation, it is asynchronous

// callbackDrain is the callback function

pa_operation xop = pa_stream_drain (stream, &callbackDrain, loop
)
// sets a pointer to the operation
player—>player—>drainer—>drain = op;

// indicates that a drain is currently running
player—>player—>drainer —>state = DRAIN_ACTIVE;
// we wait for it to be done
pa_operation_state_t state;

while ((state = pa_operation_get_state(op)) !=
PA_OPERATION_DONE)

{
if (state = PA_.OPERATION_.CANCELLED)

// resets the playback to its previous state
// ... (sets some callbacks)
player—>player—>drainer—>state = DRAIN_INACTIVE;
// unlock the mainloop to allow other operations to run
pa-threaded_-mainloop_unlock (pa—>loop);
return;
}
// waits for signal from either deferred callback or normal
operation
pa-threaded_mainloop_-wait (loop);
}

// mnormal operations continues, unlock the mainloop and return

Figure 5: Extract of code from drainStream function

0.2.5 States

Are you ready? Are you playing? Can you play a file? To avoid bugs, the
player must have these answers. For instance, if we are not playing any audio,
then there is no stream to pause. Trying to do such an operation will cause a
segmentation fault?.

We partially answered these questions with the first version. But, it showed
its limitations when trying to implement parallel states.

This kind of situation happens when the player is playing audio but is also
draining to close the stream. We want to have both information.

To hold that information, we have implemented multiple enumerations:

1.

N

The first one indicates the status of PulseAudio objects over their lifespan:

typedef enum state

{ BABY, // before mainloop initialisation
READY, // before stream initialisation
ACTIVE, // while playing/paused
TERMINATED, // killed stream but track in memory
equivalent to ready
FINAL, // killed mainloop, cannot go back
} state;

Figure 6: Enumeration definition for pa_objects

These states allow easy condition checking for some operation. For in-
stance, if the player is TERMINATED, the playing function denies the
operation.

The second enumeration indicates the states for the dynamic part of our
playback objects:
typedef enum playerStatus

NOTREADY, // if state is != ACTIVE

PLAYING, // can be drained

PAUSED, // corked stream
} playerStatus;

Figure 7: Enumeration definition for wav_player

This enumeration enables us to enable or disable some operation if the
state does not meet the requirements.

Finally, there is an enumeration to indicate if a draining operation is
running:

3PTSD talking here...

1 typedef enum DrainStatus

:

3 DRAININACTIVE, // no operation running

! DRAIN_ACTIVE, // operation running —> playing state

5 DRAIN_FINISHED, // can interrupt stream
} DrainStatus;

Figure 8: Enumeration definition for drain

All that work is all about synchronizing threads and avoiding unwanted oper-
ations. And it works now as expected, many bugs were fixed and the overall
stability has greatly improved.

0.2.6 Error handling

Since our player interacts with the GUI, it needs a way to provide error messages
instead of hard crashes using the error functions from the standard library. To
do that, we have reworked many functions to have an integer return type to
indicate if an error happened. Following the error code, the GUI will determine
a message to display shortly after this defense.

0.2.7 Forwarding/Rewinding

Forwarding/Rewinding was ready for first defense with a few hiccups. To change
the position in a file, we need to discard the audio data in the buffer and
overwrite it with new data from the new offset in the file. It can be done
using the function pa_stream_flush function. It flushes the buffer during an
asynchronous operation. Then, we change the offset to write as soon as possible
data on the buffer. There were two major bugs with our implementation:

1. The audio would get corrupted in some conditions.

2. The program would crash if the player is draining, and we changed the
offset.

The first problem was linked to a bug in the offset computation. It was not
every time a multiple of the sampling size of the track. We implemented a single
line fix:

1 player—>player—>timing—>offset = offset —
2 offset % player—>player—>info—>fmt—>samplerate;

Figure 9: Fix for the first problem

The second problem is what has motivated the rework. We were unable to cancel
a draining operation. The change of offset function will cancel any draining
operation running if the program calls it at that particular moment.

1 // If there is currently a drain, we stop it because it will
fail
2 // the draining operations times out after x seconds

3 if (player—player—>drainer —>state = DRAIN_ACTIVE)

5 cancelDrain (player);

Figure 10: Simple condition checking to solve problem #2

10

0.3 WAV encoding rework and improvements

0.3.1 Introduction

In order to complete the WAV codec, we needed to make sure the entire codec
was put to use. The relevant information lies within header — list — infos, a
linked list that stores metadata following the XMP standard so tags like:

1. Artist(s)

[\]

. Copyrights
3. Genre

4. Name

5. Album

6. etc...

The information the user will be able to change is the one displaying on the
previous list. Therefore, we wanted to add a feature where information could
be added to the file.

0.3.2 First version

The first version only rewrote the same file somewhere else. However, some
improvements could be made to the functions. The issues are the following;:

1. Inefficient write (large buffer could create some errors)
2. Not-linked to the GUI (still runs in the terminal)
3. Doesn’t do much for the user

The wav_encoding functions heavily relied on the write(2) function in order
to write both in binary and strings using the same fd. But, as we have seen,
write has some cases where it doesn’t write as much as needed. In these cases,
we would lose some data resulting in either a broken sound or lost metadata
which will crash the parser later on.

That’s why the main thing to fix on the encoding was to write a rewrite
function. This version is a bit different from practicals because we need to
know where the error is coming from as soon as possible.

11

void rewrite(int fd, const void sbuf, size_t count, char serr_msg)
{
int r;
size_-t offset = 0;
while (offset < count)
{
r = write(fd, buf + offset, count — offset);
if (r = —1)
{
errx (EXIT_FAILURE, ”failed to write %s into fd”,
err_msg);
it (r = 0)
break;
offset 4= r;
}
}

The new parameter err_msg will allow us to know which particular part of
the writing process failed. This method proves very useful when writing data
from the linked list, putting the infolD signals where to debug right away.

0.3.3 New version

The linking and UX are part of the second version of the WAV encoding.

When the only thing the codec does is copy-paste, there’s no point in using
it which renders our work useless.

Additionally, if it’s useless to the user it doesn’t have its place in the GUI
and thus, the final part.

Therefore, we needed a way to link the WAV codec to the GUI.

Adding information

The main reason someone might want to tinker with audio files to begin with
is to add new information which is what we will do with the WAV codec.

The user will be able to change and/or add information from the file if they
choose to do so.

The information is ”limited” to header — list — infos linked list as it
contains most of the metadata.

12

S N

for (; current != NULL; current = current—>next)

{
int art = strncmp (current—>infold , "IART”, 4);
if (art = 0 && strcmp(argv[0], "No changes\n”) != 0)
{
unsigned int diff = strlen(argv[0]) — strlen(current—>
data) ;
current—>size += diff;
header—>list —>chunk_size 4= diff;
header—>riff —>fileSize 4= diff;
current—>data = argv [0];
check [0] = 1;
continue;
}
}

This template mostly explains how we can update the information from the
info list.

The parameters are the list of arguments called argv which the info given
by the user. It follows a convention we created which goes as follow:

0 Artist
1 Copyrights
2 Genre
3 Name
4 Album

If no information is given by the user (a ’\n’ using the terminal), the string
is given "No changes \n” to compare to something more consistent than a null
string.

If the element already exists (artists, name, etc...), it’s just being replaced
after some updates to every relevant size parameter. The check list needs to
know whether the string was used.

Otherwise, we have to the create the element ourselves like so:
strepyn ((unsigned char *)”IART”, (char x)artist—>infold, 4);
artist —>size = strlen (argv[0]);

artist —>data = argv[0];

artist —>next = NULL;

header—>riff —>fileSize 4= artist—>size;

header—>list —>chunk_size 4= artist —>size;

current—>next = artist;

current = current—>next;

Mostly the same thing but here we have to use the linked list structure
carefully as to not lose any data by simply replacing a node instead of adding
one to the list. The relevant size parameters are still being updated and we can
write all that new information to a new file.

13

Linking

How do we link those functions to the GUI then? We create a button to show
different fields where the user can change them, press enter and have those
changes written into a new file.

Those fields will not be empty if the information already exists. This part
was planned for this defense but we are a bit late on the schedule.

0.3.4 Conclusion

After this part is done and implemented into the GUI, it will finally conclude
our final version of the WAV codec. What remains is the MP3 encoding which
focuses on filtering, deleting and compressing data. Filtering and deleting data
while conserving a clear, distinct sound is the next challenge for us.

0.4 MP3 Encoding

0.4.1 Time-Frequency Filterbank

Applying filter to signals has the main advantage of getting rid of the useless
aspects of the signal and reduce the size of the signal.

The MP3 standard recommends a high-pass filter to improve the sound
quality while removing lower frequencies.

This is the first step of the first phase, where low frequencies are simply
being cut out from the signal by default.

0.4.2 Analysis Subband Filter
This filter is a polyphase filter. It turns a PCM signal (from a WAV file) with

fs as default sampling frequency into 32 equally spaced subsection by sampling
frequencies of fs/32.

This polyphase filter is later completed by the MDCT, those two create a
hybrid filterbank.
Implementation
We have to follow the following steps:

1. Divide the audio into 32 samples

2. Create a list X of 512 elements where the first 32 elements are the audio
samples then:

Xi = X¢_32, for i = 511 down to 32. (1)

3. Multiply the each coefficient by an constant array C to create an array Z

14

4. Create an array Y following this equation:

7
Y, = ZZi + 645, for j = 0 down to 63. (2)
=0

5. Create the 32 subband samples S by matrixing with:

63
Si =Y MYy, fori=0to 31. (3)
k=0

6. The final equation which will give us the coefficients of the final matrix
by the following formula:

(2i +1)(k — 16)

™ .
ol , fori=0 to 31. (4)

M; j, = cos

The constant array C draws this function:

0.0386 T T
H 1
0.03 i g
ORI T Lo e et e s B o
', : :
00186 z s Az
o.o1 .’ ,
[; \
0.008 |--- + Y A
\ H ! .
o ! e Y :
1 H /i 1 Y
i -t i A
o 100 150 200 250 300 350 400 450 500

Figure 1: Coeflicients from C;

0.4.3 Psycho-acoustic model

Introduction

The MPEG standard encoding process is lossy. It means that the original audio,
in addition to being compressed, is also being modified to reduce its size. The
process discards also some data. To determine which data to keep and delete,

the standard uses a psycho-acoustic model.

15

The term psycho-acoustic itself is a part of science that studies the relation
between the perception of sound in the human ears and the sound being sent.
Here, in our encoding process, a psycho-acoustic model tries to imitate the per-
ception of the sound and select only the sound that the human can hear. For
instance, generally speaking, we cannot perceive sounds above 20 kHz.Hence,
the sounds above that range will be discarded by the model. But, there’s more
to it than that. The implementation of model 1 for the MPEG 3 - Layer 3 audio
encoding process requires vast algorithms that this part describes.

Definitions

This part of the project is not only about computer science. Hence, we decided
to provide some definitions for some keywords.

1. Sound Pressure Level (SPL): represents the relative loudness of a sound.
It can be negative or positive. Its unit is the decibel (dB).

2. Masking: Our ears cannot distinguish two sounds that are too close. The
sound with the higher sound pressure will mask the other. The model uses
them to discard some data.

3. Critical Bandwidth (critical band): the critical band is the band of audio
frequencies within which a second tone will interfere with the perception
of the first tone by auditory masking?. It is the first block to detect the
masking effect.

4. Maskers: represents the pressures required to hear a sound at a frequency
f- In our implementation, it is an array that scans ranges of frequencies.
Unit is again dB.

4nttps://www.wikiwand.com/en/Critical_band

16

https://www.wikiwand.com/en/Critical_band

Steps in implementation

This small subsection details the global process in which audio samples go
through to get a mask. It will be a quick overview. The following parts will
explain the notions in depth.

1. Using a Fast Fourier Transform (FFT) algorithm, we transform a time
signal into frequencies with relative sound pressure levels. The result is
called the SPL array, and the indices are called spectral lines.

2. Determination of the sound pressure level in each subband. This process
is not yet complete because it interacts with future parts of the project.

3. Finding tonal and non-tonal components in our spectral lines.

4. Discarding data that cannot be heard by the human ear. They are either
too weak or too close to another tonal component.

5. Calculation of the maskers using the relevant data. We compute two of
them: one for tonal components and one for noises.

6. Computation of the global masker.
7. Determination of the minimum masking threshold in each subband.

8. Computation of the subband masking ration (SMR).

FFT: getting the sound pressures

As explained above, the first step is about transforming our audio samples from
a unit of time into a range of frequencies. First, we must normalize our input:

s(n)

z(n) = N % 2b—1

Where s(n) is the input array, N the number of samples in our array, and b the
number of bits per sample.

Then, with s(n), we compute the FFT, which is as follows:

N-1
2mkn o
SPL(k) = PN +10log(g) | > _ @(n)h(n)exp (i ~)

n=0

Where PN is the power normalization term, for MP3, it is required to scale the
values with a maximum of 96 dB, h(n) is the Hann window®.

5Please refer to https://www.wikivand.com/en/Hann_function

17

https://www.wikiwand.com/en/Hann_function

In the C language, it translates to this piece of code:

// memory allocation here, Hann window is computed also above
long double max = —INFINITY; //macro from standard
for (size-t i = 0; i < HALF; i++)
{
// FFT transform on NB.SAMPLES points => 1024 for MP3
// sum allows to retrieve total value faster

long double complex sum = 0;
for (size_t j = 0; j < NBSSAMPLES; j++)
{

long double complex val = cexpl(—I% ((2«M_PIxixj)/
NB_SAMPLES)) ;

long double complex q = window[j]*samples[j]*val;
sum += q;

}

// conversion to real norm

long double norm = cabsl(sum);

long double sq = powl(norm, 2);

long double res;

// mnull logarithm is undefined!

if (sq != 0)
res = 10xlogl101(sq);
else
res = sq;
vector [i] = res;
if (res > max)
max = res;

}

// normalization to 96DB max
long double PN = 96.0 —max;
addToArrayl (vector , HALF, PN);

Figure 1: FFT transform code for MP3 encoding

As you can see, we determine the PN using the result of the left-hand side term.
The vector is 512 points long, which is half of the 1024 points used. In reality,
there is a symmetry between the part before the middle and after the middle of
the array.

These points represent the relative pressure with a maximum level of 96 dB.
Moreover, the points scan a range of frequencies, which are % Hz. For in-
stance, if fs = 44100 Hz, then each point scans a range of approximately 43.066
Hz. Meaning that at SPL(112) gives the relative pressure of the sounds in the

range of frequencies of 4823.44 Hz. These points are also called spectral lines.

18

Using a Jupyter notebook and some python magic®, we get the following
graph:

100 4

result {dB)

20 4

0 100 200 300 400 500
indices

Figure 2: Example of result using an FFT

This result is similar to what one could get with specialized software (Au-
dacity” for instance).

SPL determination for subbands

This part is described in the part 3.2.2 of the pdf available at:
http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf

It was only partially implemented because It requires data from external parts
of the project not yet implemented.

61t’s shiny...
"https://manual.audacityteam.org/man/plot_spectrum.html

19

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf
https://manual.audacityteam.org/man/plot_spectrum.html

Tonal and non-tonal components

To determine the masker, we need to find the tonal and non-tonal components.
We determine them using the following method:

1. Determining local maxima, they satisfy this relation SPL(k) > SPL(k+1)
and SPL(k) > SPL(k — 1) with k € [1; N/2]

2. Using the maxima, we check that they verify the following condition:
SPL(k) — SPL(k + j) > 7 dB for all j in range:

(a) if 2 < k < 63 then for each value of j in {—2,2}, the condition must
be satisfied.

(b) if 63 < k < 127 then each of the previous j and the following one in
{-3, 3}, the condition must be satisfied.

(c) if 127 < k < 255, then j must satisfy the previous conditions and for
these values: {—6,6}

(d) if 255 < k < 500, finally, we add: {—12,12}

3. If the index k satisfies all these conditions, we add it to the list of tonal
components.

For this part (and not only this one), we need an implementation of lists. We
decided to go for a static list implementation, which follows the following dec-
laration:

typedef struct static_list

|

size_t xdata; // stores indexes
size_t size; // real size in memory
size_t nb_el; // number of elements

i} static_list;

Figure 3: Declaration of the static_list type
We implemented the following operations:
1. Append including extensions if the array is full.
2. Pop at index i.

3. Contains to search an item in the list.

20

To find noise components in the samples, we use another method. This
method scans through critical bands. These follow an ISO norm and are pro-
vided in this pdf (table 3.8):

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf

Each critical band in the table represents a range of indexes in the table of
sound pressures. We sum the pressures of the frequencies not yet treated by the
previous function (tonal process).

As a friendly reminder, please remember that the decibel is not a linear scale.
To sum it, we must convert the values back to powers, sum them, and compute
the resulting sound pressure level®.

The next step for this algorithm is to compute the center of frequency matched
with the index of the noises. It is the result of a sum weighted by the critical
bands:)

Yot 10SPE/10 (5 (cb() — i)

_ n=cbi
center = Topower/10

Where power is the addition of each sound pressure, c¢bi and cbi + 1 are the
ranges of the critical bands in the array of volumes. We round them to get the
associated index. z is a function that provides the critical bandwidth associated
with frequency f.

Finally, we get two lists with the tonal and non-tonal sounds. Those lists contain
indices of the SPL array.

Decimation: remove useless sounds

As previously, our ears are not perfect. We cannot hear frequencies under a
threshold in decibel, which varies for each frequency. Also, if two tonal sounds
are too close, we only hear one.
We can compute the threshold of hearing thanks to this formula for each fre-
quency f:

f f

_ —0. s
T(f) =3.64 (7555) """ = 65 exp (=06(5555 = 3:3)) +107({755)" (4B)

So for each tonal and non-tonal component, we check if the volume is above
that threshold. If it is not the case, we discard it.

For tonal components, we need to compute their relative distance in barks.
If z(t[i + 1]) — z(t[i]) < 0.5 (bark) then we remove the one with the lowest vol-
ume according to the array of sound pressures. For the sake of simplicity in the
formula, t[index] represents the frequency associated with the index requested.

8See: https://www.wikiwand.com/en/Decibel

21

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf
https://www.wikiwand.com/en/Decibel

16

Masking thresholds for non-tonal and tonal components

We have now down-sampled the sound provided to a subset of tonal and non-
tonal components. However, in reality, we can afford to have more data than
this small subset. For a sampling rate at 44.1 kHz, we can have 130 ranges of
frequencies with their masking threshold®.

Rather than going through the numerous formulas, we will be giving a snippet
of code to illustrate the process:

// for the 130 critical bands do...
for (size-t i = 0; i < crit—>size; i++)
{
// initializes list of volumes
masks[i] = initStaticListF ();
// critical band associated to frequency at index i
long double zi = crit—>barks[i];
for (size-t j = 0; j < t—>tonals—>nb_el; j++)

// index of tonal component in the list
size_t k = t—>tonals—>data[]];
// map gives the nearest critical band from the
frequency given by k
long double zj = crit—>barks|[map[k]];
long double dz = zi—zj;
if (dz >= —3 && dz <= 8)
{
long double avtm = —1.525 — 0.275 * zj — 4.5;
long double vf = 0;
if (dz >= -3 && dz < —1)
vl = 17 % (dz+1) — (0.4 = SPL[k] + 6);

else if (dz >= —1 && dz < 0)
vf = dz x (0.4 %= SPL[k] + 6);
else if (dz >= 0 && dz < 1)
vi = —17xdz;
else if (dz >= 1 && dz <= 8)
vi = —(dz — 1) = (17 — 0.15 = SPL[k]) — 17;

// append the sum to the list
appendStaticListF (masks[i], SPL[k]+ vftavtm);

Figure 4: Masking threshold computation for tonal components

The resulting array of lists contains the different masking thresholds for each
component.

9We cannot say it enough, please read http://www.mp3-tech.org/programmer/docs/
jacaba_main.pdf at 3.2.6

22

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf
http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf

Global masking threshold

The global masking threshold is the sum of all thresholds (from tonal and non-
tonal components) for each critical band. Again, the sum of decibels is not a
regular sum. We must merge the values and sum them all together using a
function. Our implementation is as follows:

// create a list of long floats
static_list_f xg_masks = initStaticListF ();

// size = 130, the number of critical bands
for (size-t 1 = 0; i < size; i+4)
{

// merge all values into one array

// its size is 1 (thr) + nb el in noise and tonal

long double xvalues = calloc(l+tonal[i]—>nb_el4noises[i]—>
nb_el, sizeof(long double));

values [0] = table—>thresholds[i];

// copy at offset 1

memcpy (values+1, tonal[i]—>data, tonal[i]->nb_elxsizeof(
long double));

// copy at offset 14nb values in tonal

memcpy (values+1l+tonal [i]—>nb_el, noises[i]—>data, noises]|[i
|->nb_elxsizeof (long double));

// computes the dB sum

long double final = add_db(values, 14+tonal[i]—>nb_el+noises
[i]=>nb_el);

// appends it to the list of global masks

appendStaticListF (g_masks, final);

free (values);

}

return g-masks;

Figure 5: Global masking threshold computation

23

1
2
3
4

Minimum masksing threshold

Now, we must go back to our subbands. They are only 32 for this encoding
process. To reduce the previous 130 samples, we get the minimum between
each subband. In the C language, we get:

long double xgetMinimumMaskThr(static_list_f =*global, size_t s*map)
long double xmask = calloc (NB.SUBBANDS, sizeof(long double));
for (size_-t 1 = 0; i < NBSUBBANDS; i++)
{
// gets the minimum between index first and last of global
masks thr
size_t first = map[i*SUB_SIZE];
size_t last = map[(i+1)*SUB_SIZE —1];
long double min = INFINITY ;
for (size-t 1 = first; i <= last && i < global->nb_el; i++)
{
if (global-—>data[i] < min)
min = global—data[i];
// default value is 0
mask[i] = min = INFINITY ? 0 : min;
}
return mask;
}

Figure 6: Minimum mask value for each subband

Signal to Mask Ratio

We compute the value by removing the array from the previous part to the array
given by the SPL determination. However, it is not yet fully implemented. It
is the final part of our psycho-acoustic model. It allows us to compute the bit
allocation required.

24

Conclusion

The psycho-acoustic model for the encoding is already quite vast. It is an old
model but still illustrates the complexity of the science behind it.

According to Github, this part of the project represents around 1200 lines of
code written by at most two person. It does not include the multiple tools
and hours of research needed to understand the concepts behind the code. For
instance, we coded the equivalent code in python to test our code and create a
test suite.

Moreover, the MP3 standard was a proprietary codec'® for a long time. It means
that one cannot find easily on the Internet resources and standards. That led to
lengthy research in the depth of Google to find decent documentation to do our
implementation. It is a difficulty that might undermine our capacity to finish
the encoding process.

WOhttps://www.wikivand.com/fr/MP3 ISO standard: 11172-3, 13818-3

25

https://www.wikiwand.com/fr/MP3

0.5 GUI: Graphic User Interface

0.5.1 Introduction

In the previous defense, we were able to show some basic features of the user
interface such as the play-pause buttons, file chooser, progress bar, volume but-
ton, and some features which were not fully functioning. For this defense, we
were able to implement an information bar and playlist for the audio chosen by
the user.

The first section which will be explained is about the information bar. The
information bar is a section of the interface that shows different information
about the audio chosen by the user. More details will be shown below. The
second section which is about the playlist implementation will cover different
mechanisms used to implement a basic playlist for a list of songs. It explains
how we used pulseaudio and some GTK features to make our user interface
dynamic and professional.

After explaining all the features which are implemented for this project, we
will go through some ideas that can be done for the final defense and hand in a
final product. This will be explained in the progression section to give an idea
of where we are in the project and also what the final project project would
look like.

Finally, there will be a conclusion part to give a summary about what is done
for this defense and for also the remaining for the final defense which is approx-

imately in a month.
1

Ihttps://developer.gnome.org/gtk3/stable/

26

https://developer.gnome.org/gtk3/stable/

0.5.2 Information on songs

In this sub-part of the User Interface, one can find bellow the defined structures
that will be used in later shown functions. They will give a better understanding.

1 typedef struct playlist_t

2
3 pthread_t sthreads; // check if the task is finished

| wav kkw; // headers

5 file *xf; // files 10

6 size_t nb_el; // nb of elements currently

7 size_t size; // total size of the list in memory
8 size_t index;

o } playlist_t;

11 typedef struct UserInterface //To avoid global variables (widgets)

12 {

13 GtkWindow* window ;

14 GtkButton* play_pause;

15 guint ID;

16 GtkVolumeButton xvolume;
17 GtkScale xslider ;

18 GtkAdjustment xadjustment ;

19 char *name_chooser;

0 GtkListStore xdialog_list_store;
1 GtkTreeView *xdialog_tree;

2 GtkTreeSelection x*select ;
GtkLabel xname;

1 GtkLabel *genre;

5 GtkLabel xalbum;

6 GtkImage *song_image;

7 GtkFileChooser xaudio_chooser;
s } UserlInterface;

30 typedef struct gtk_player //Main structure to access data

31 {

32 char xfilename;

33 pa-player splayer;
34 file =xdata;
35 UserInterface ui;

36 playlist_t *xplaylist;
s7 } gtk_player;

In this defense, H3rtz.stdio worked on making a better looking User Inter-
face. For that, the team chose to display the most important information which
are :

1. Album
2. Genre
3. Artist4
4. Name

The next sub-subsections will give more details about these features. But first,
here is a picture that quickly shows the features of the interface that will be
explained soon in the next sub-subsections.

27

Help '

“*"M
HBARTZ2.STDT0

Choose the song you want to play

Playlist

Shifty Boo Mansion
DREAM SOLISTER
Shifty Boo Mansion

Impact Moderato
&30
BhNEELAYa—a>

Add 43 file.mp3 im] Remove Remove all
Artist : Mahito Yokota, Toru Minegishi & Yasuaki Iwata
Genre : Soundtrack
Album : Super Mario 3D World OST Disc 1

@ ® 6

Al 46,8

Figure 3: Main function of the album getter

Album of the song

The used data are obtained by parsing with a function that transforms the
information of the header into an object of strings. When they are retrieved, to
access the album, the code checks whether that specific info is given or not. If it
is, the right album will be displayed in the label GtkLabel *album. Otherwise,
it will display ” Unknown”.

void album(gpointer userdata)

{
gtk_player =xplayer = userdata;
fileInfo =xinfo;
info = getFilelnfo (player—>player—>player—>info—>list);
gtk_label_set_text (player—>ui.album, info—>album ? info—>album
” Unknown”) ;
free (info);
}

28

1

)

3

Figure 7: Main function of the album getter

Genre of the song

This part works just like the previous part, but here the genre will be displayed
in the GtkLabel *genre.

void genre(gpointer userdata)

gtk_player xplayer = userdata;

fileInfo =xgenre;

genre = getFileInfo (player—>player—>player—>info—>1list);
gtk_label_set_text (player—>ui.genre, genre—>genre ? genre—>
genre : ”Unknown”);

free (genre);

Figure 8: Main function of the genre getter

Artist of the song

The data is accessed in the same way as the previous part. To access the artist
of the playing song, the code checks whether that specific info is given or not.
If it is, the artist will be displayed in the label GtkLabel *name. Otherwise, it
will display ”Unknown”.

void changeTitle(gpointer userdata)

{
gtk_player xplayer = userdata;
fileInfo =xinfo;
info = getFilelnfo (player—>player—>player—>info—>list);
gtk_label_set_text (player—>ui.name, info—>artists ? info—>
artists : ”Unknown”);
free (info);

Figure 9: Main function of the artist getter

Name of the song

It is important to precise that the "name of the song” is not the display on the
file chooser. It is actually given in the header, and retrieved by the function
getFilelnfo(), then accessed bellow with f—name. The displayed code bellow
checks whether that specific info is given or not. If it is, the song’s name will be
displayed in the GtkTreeView (later explained in the section 4.3.1). Otherwise,
it will display the path to the song.

void append (GtkWidget *widget __attribute__((unused)), gpointer
userdata)
{

gtk_player splayer = userdata; // Initialization of player
structure

29

GtkTreelter iter; // Value that hold the
addresses of list items
gchar xstr = player—>ui.name_chooser; // Name of the file
chosen
player—>ui. dialog_list_store = GTK_LIST_STORE(
gtk_tree_view_get_model (player—ui.dialog_tree)); //
Getting the model from glade
tuple data = ParseTrack(str); // Gets the info about the
track
if (!data.a || !data.b)
return,;
player—>playlist —>f[player—>playlist —>nb_el] = data.a;
player—>playlist —>w][player—>playlist —>nb_el| = data.b;
player—>playlist —>nb_el+4++;
gtk_list_store_append (player—>ui.dialog-list_store , &iter); //
Appending elements to the list

wav xw = data.b;

fileInfo *xf = getFileInfo (w—>list);

char xentry = f-—>name ? f-—>name : str; // Getting the filename
free(f);

gtk_list_store_set (player—>ui.dialog_list_store , &iter ,
LISTIITEM, entry, —1);

// Sets the value of one or more cells in the row referenced by
iter

Figure 10: Main function of the song’s name getter

30

1

2

{

0.5.3 Playlist

Before starting directly explaining about the implementation process we will
introduce the tools that we used for this feature. Mainly, there are two tools
that we used for this feature which are pulseaudio and GTK TreeView widget
from GTK. In the previous report we gave brief introduction about pulseaudio
and GTK. Hence, we will give the links to get more information about these
two tools below! 2.

GTK TreeView

The GTK TreeView 2 is a widget used for displaying both trees and lists. It
is part of the GTK Container tools hierarchically. To use this widget, we need
to define a data structure. By data structure, it means either the lists or trees.
For our project and specifically this defense, we used the list data structure.
To define this structure in GTK, we used the GTK ListStore 4 which allows us
to input a list inside a tree view build by the GTK TreeView. The ListStore
structure contains different features like adding rows and columns, and with the
integration of GTK TreeView, it makes items of a list clickable. It also helps
the user to modify the items of a list.

We used two different structures of lists to take care of adding, removing
elements and the stream of the loaded audio files. To be more precise, the GTK
part is performing addition and removal of items from the list store while the
other list structure concerned with PulseAudio is controlling the stream, moving
to the next song or previous song and so on. These processes are running at the
same time.

Basically, using the GTK TreeView widget we were able to add and remove
different items in a list which is really important for the implementation of a
playlist. The functions implemented are as follows: -

Adding item

void append(GtkWidget *widget __attribute__((unused)), gpointer
userdata)

gtk_player splayer = userdata; // Initialization of player
structure

GtkTreelter iter; // Value that hold the
addresses of list items

gchar xstr = player—>ui.name_chooser; // Name of the file
chosen

player—>ui. dialog_list_-store = GTK_LIST_STORE(
gtk_tree_view_get_-model (player—>ui.dialog_tree)); //
Getting the model from glade

Ihttps://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/
2https://developer.gnome.org/gtk3/stable/
Shttps://developer.gnome.org/gtk3/stable/GtkTreeView. html
“https://developer.gnome.org/gtk3/stable/GtkListStore.html

31

https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/GtkTreeView.html
https://developer.gnome.org/gtk3/stable/GtkListStore.html

10
11

13

14

1

11
12

13

14

tuple data =
if (!data.a |
return;

ParseTr
| !data

ack(str);
.b)

// Gets the info about the track

player—>playlist —>f[player—>playlist —>nb_el] = data.a;

player—>playlist —>w|[player—>playlist —>nb_el]

player—>playlist —>nb_el+4++;
gtk_list_store_append (player—>ui.dialog_list_store , &iter); //
Appending elements
wav *xw = data.b;

fileInfo *f = getFileInfo (w—>list);

char xentry =

filename
free(f);
gtk_list_store_set (player—>ui.dialog_list_store , &iter ,

LIST_ITEM,
// Sets the

iter

to the 1i

entry , —1);
value of

st

f—>name ? f—>name

data.b;

str; // Getting the

one or more cells in the row referenced by

Figure 11: Function to add a song to the playlist

Removing item

void remove_item (GtkWidget xwidget __attribute__ ((unused)),
gpointer userdata)

{

gtk_player xplayer =
structure

GtkTreelter i
addresses of

GtkTreeModel xmodel;

ter;

userdata

list items

)

// Initialization of player

// Value that hold the

model = gtk_tree_view_get_model (player—>ui.dialog_tree); //

Getting the

model

from glade

player—>ui.select = gtk_tree_view_get_selection (player—>ui.
// Getting the GIK TreeSelection from glade

dialog_tree);

if (gtk_-tree_model_get_iter_first (model, &iter) = FALSE) //
Checking if t

return;

he list

is empty

ghboolean found = gtk_tree_selection_get_selected (player—>ui.
select ,

if

GtkTreelter

if

(! found)

return;

iter_bis;

&model , &iter)

(gtk_tree_model_get_iter_first (model, &iter_bis) = FALSE)

return;

gchar =xkey;
gtk_tree_model_get (model, &iter , LISTITEM, &key, —1);
ssize_-t 1 = findIndex (player, key); // Getting the index of the

songs in the

if

(1= 1)

return;

list

32

1

size_t i = (size_t)l;

if (i >= player—>playlist—nb_el)
return;

if (i = player—>playlist —>index)

Pause (player—>player); // Pause the audio

terminateStream (player—>player); // Terminate the stream
}
removeTrackAtIndex (player—>playlist , i); // Remove from the
PulseAudio list structure
gtk_list_store_remove (player—>ui.dialog_list_store , &iter); //
Remove from the Gtk ListStore

Figure 12: Function to remove a song from the playlist

void remove_all (GtkWidget *widget __attribute__((unused)), gpointer

{

userdata)

gtk_player splayer = userdata; // Initialization of player
structure

GtkTreeModel xmodel;

GtkTreelter iter; // Value that hold the addresses of list
items

model = gtk_tree_view_get_model (player—>ui.dialog_-tree); //
Getting the model from glade

if (gtk_tree_model_get_iter_first (model, &iter) = FALSE)

return,;

}

gtk_list_store_clear (player—>ui.dialog_list_store); // Remove
from GITK ListStore
if (player—>player—>pa_state =— ACTIVE)

Pause(player—>player);
terminateStream (player—>player);

cleanPlaylist (player—>playlist); // Remove from the PulseAudio
list structure

Figure 13: Function remove all song from the playlist

33

Playlist Design samples

In this project we designed two layouts on how to show the playlist. The image
samples are below :

File Help Create playlist |
Playlists '

HEARTZ.ST0T0

Choose the song you want to play

(None) (i

Edit Info

Artist :
Genre :

Album :

® ® ®

Figure 15: First version of the playlist’s display

34

Help '

FIEARTZ.S7TDX0

Choose the song you want to play

Playlist
Add (None) ™ Remove Remove all
Artist:
Genre :
Album:
¥ 00

Figure 16: Second version of the playlist’s display

35

H3ARTZ.5TDIO

Choose the song you want to play

(None) Remove GEIIEE |

Genre :

Album :

Figure 17: Second version on Ubuntu’s dark mode

After a discussion upon the aesthetics and functionality of where the playlist
should be put, we decided to use what you observe in the second sample. For
this defense we’re creating a playlist of songs even for a single song because it’s
more manageable which is also the reason why we picked the second sample.
Furthermore, it is noticeable that there is a background color change in these
three samples which comes from the theme that user uses. On Ubuntu, if one
uses a dark theme, then the our application would look like the second sample,
otherwise the first or second one is the default.

36

0.5.4 Conclusion

For this defense, H3rtz.stdio’s main objective was to implement a playlist dis-
play for the user interface.

At first, it seemed complicated to implement it because there was many ways to
implement a playlist, and also multiple elements that allows creating a playlist
display. As usual, there are debates, votes, and reflections on how that should
be displayed and implemented. Thanks to the team and a set objective, the
user interface looks more attractive and complete.

For the next defense, the objectives for the interface are :
1. Feature to change song’s information using a GtkDialogBox.

2. Try to change the file chooser such that it only displays wav and mp3 files
while browsing files.

3. Display the playing song’s image on the interface.
4. Feature "Help” button that opens the project’s website.

And of course, once all these features are done, adding more features and im-
proving the interface’s aesthetic and backends will be realised.

37

0.6 Assignment tabular

We will assign a letter to every member to make our schedule more readable

1. KB : Kevin-Brian

2. J: Jean

3. L: Lam

4. Y : Yabs
Tasks KB/ J|L|Y
Multi-threading | X | X | X | X
Audio formats X | X
GUI X | X
Website X |+

Cross : (x) Person in charge and Plus : (+) Assistant.
As you can see multi-threading will involve everybody.

38

0.7 Progression

Now, we need to consider how we are going to handle our time based on the

three main deadlines :

1. The 1% presentation (March 29" - 224 April, 2021)

2. The 2" presentation (3'4 - 7th May, 2021)

3. The 3" presentation (14" - 18" June, 2021)

We made a tabular to make it easy to read. The 1st tabular below is the

progression goals that we set from the beginning of the project :

Tasks st | ond | 3rd
Multi-threading 30 | 70 | 100
Audio encode - WAV | 30 | 100 | 100
Audio decode - WAV | 80 | 100 | 100
Audio encode - MP3 | 0 | 60 | 100
Audio decode - MP3 | 30 | 80 | 100
User Interface 40 | 70 | 100
Conversion Support 0 | 40 | 100
Website 100 | 100 | 100
And this is our actual progression on the project :
Tasks st | ond | 3rd
Multi-threading 75 | 90 | 100
Audio encode - WAV 70 | 100 | 100
Audio decode - WAV 80 | 100 | 100
Audio encode - MP3 0 | 35 | 100
Audio decode - MP3 (GST) | 75 | 90 | 100
User Interface 50 | 70 | 100
Conversion Support 0 | 40 | 100
Website 100 | 100 | 100

39

0.8 Conclusion

For the second defense, our team kept the pace and hit major milestones with
the User Interface. The playlist is functional and the entire interface’s backend
has been reworked.

The WAV codec is now over, the interface is entering its final stages so now
we can dedicate the final phase to MP3 encoding. The pace will no doubt in-
crease as the final deadline gets closer and closer.

Finally, we were not able to be on time with the MP3 encoding but if the
entire group collaborates, we might be able to finish everything on time.

Thank you.

40

	Introduction
	PulseAudio back-end rework
	Introduction
	Motivations
	Structures
	Drain: a particular operation
	States
	Error handling
	Forwarding/Rewinding

	WAV encoding rework and improvements
	Introduction
	First version
	New version
	Conclusion

	MP3 Encoding
	Time-Frequency Filterbank
	Analysis Subband Filter
	Psycho-acoustic model

	GUI: Graphic User Interface
	Introduction
	Information on songs
	Playlist
	Conclusion

	Assignment tabular
	Progression
	Conclusion

