
H3rtz.stdio

Final Report

Jean ”Areas” Bou Raad
Kevin-Brian ”KB” N’Diaye

Thanh Lam ”Vellelah” Nguyen
Yabsira ”Yabs” Alemayehu MULAT

1

Contents

1 Introduction 5

2 Wave file format 6
2.1 Introduction to the format . 6
2.2 IO: handling files . 6
2.3 Decoding process . 7

2.3.1 Introduction to headers 7
2.3.2 Parser: main execution loop 8
2.3.3 Parser: the RIFF chunk 9
2.3.4 Tool: merging bytes . 11
2.3.5 Parser: the FMT chunk 14
2.3.6 Parser: the FACT chunk 18
2.3.7 Parser: the DATA chunk 18
2.3.8 Parser: the LIST chunk 18

2.4 Encoding process . 20
2.4.1 Writing the new header 21
2.4.2 GUI version . 23
2.4.3 Software used . 25

2.5 Conclusion . 25

3 PulseAudio - Multi-threaded API 26
3.1 Definitions . 26
3.2 Main steps of implementation & features 27
3.3 Storing objects in structures . 28
3.4 Implementation . 29

3.4.1 Multi-threading, callbacks, signals: how it works 29
3.4.2 States . 30
3.4.3 Creating a PulseAudio player using the library 31
3.4.4 Creating a stream from a Wave file 32
3.4.5 Sending audio samples to play sound 33
3.4.6 Pausing & Resuming audio 33
3.4.7 Terminating & Draining a stream 34
3.4.8 Offsetting: back and forth in the tracks 36
3.4.9 Volume . 37

2

3.4.10 Timestamps . 38
3.4.11 MP3 and other formats playback 39

3.5 Conclusion . 40

4 MP3 Encoding 41
4.1 Time-Frequency Filterbank . 41
4.2 Analysis Subband Filter . 41

4.2.1 Implementation . 41
4.3 Psycho-acoustic model . 42

4.3.1 Introduction . 43
4.3.2 Definitions . 43
4.3.3 Steps in implementation 44
4.3.4 FFT: getting the sound pressures 44
4.3.5 SPL determination for subbands 46
4.3.6 Tonal and non-tonal components 47
4.3.7 Decimation: remove useless sounds 48
4.3.8 Masking thresholds for non-tonal and tonal components . 49
4.3.9 Global masking threshold 50
4.3.10 Minimum masksing threshold 51

4.4 Conclusion . 52

5 Creating a new file Format 53
5.1 Huffman Coding . 53

5.1.1 Introduction . 53
5.1.2 Huffman Compression Algorithm 53
5.1.3 Huffman Decompression Algorithm 64

5.2 Adaptation of WAVE file format 67
5.2.1 General encoding process 67
5.2.2 Decoding . 68
5.2.3 Linking to PulseAudio - Back-end 69
5.2.4 Linking with GUI . 71

6 GUI 72
6.1 Introduction . 72
6.2 Glade . 73
6.3 GTK . 74
6.4 The first defense . 74

6.4.1 File chooser . 74
6.4.2 Play and Pause button . 75
6.4.3 Progress Bar . 76
6.4.4 Volume Button . 77
6.4.5 Name of artists . 77

6.5 The second defense . 78
6.5.1 Information on songs . 78
6.5.2 Album of the song . 80
6.5.3 Genre of the song . 80

3

6.5.4 Artist of the song . 80
6.5.5 Name of the song . 81
6.5.6 Playlist . 82

6.6 The last defense . 88
6.6.1 Encoder . 88
6.6.2 Converter . 88
6.6.3 Dynamic logo for file formats 89
6.6.4 About . 89
6.6.5 Warning Dialogs . 90
6.6.6 File chooser extensions . 90

6.7 Conclusion . 90

7 Website 91
7.1 Design . 91
7.2 Hosting . 92

8 Book of specifications: follow-up 93
8.1 Assignment tabular . 93
8.2 Progression . 94

9 Conclusion 96

4

Chapter 1

Introduction

In this last report, we will present the achievements of our team over the en-
tire semester. Every reported issue has been fixed and the main goals for this
project have been achieved.

We will dissect each part of our project step by step, look back on the progress
we have made and share our thoughts on the project. The first part of our
report will be about the pulse-audio backend and the WAV file format.

The second one will bring details on the implemented first and second phase of
the MP3 encoding.

The third chapter introduces the new file format based on Huffman coding.

Finally, the final look of the user interface will be shown. The part showcases
the integration between the algorithmic part and the UI and its evolution.

5

Chapter 2

Wave file format

In this part, we will be providing explanation on our work to encode and decode
the wave file format.

2.1 Introduction to the format

The wave file format is an old audio file format developed by Microsoft and IBM
released in 1991. This standard is nowadays wildly adopted by major operating
systems such as Windows, Linux distributions and many more.

This vast adoption was possible thanks to the use of a standard to encode
the data: the Ressource Interchange File Format also known as the RIFF.

Wave files can contain various types of audio data: uncompressed and com-
pressed format are possible. Usually, we find uncompressed audio data under
the form of Pulse-code modulation (PCM). However, we can also find MPEG
compressed data and many other kinds of compression.

Over the years, the WAV format evolved thanks to various updates made by
Microsoft. Today, in addition to audio data, one can find various metadata in
the files concerning the track played. Also, the encoding process has slightly
evolved.

2.2 IO: handling files

Before going into the details of our decode, we need first to introduce systems
implemented to read files.

We use the system calls to open first a file and then map it in memory us-
ing the function mmap(2). The program puts the data in this structure:

6

1 typede f s t r u c t f i l e
2 {
3 i n t fd ; // f i l e d e s c r i p t o r
4 unsigned char ∗map ; // data
5 s t r u c t s t a t ∗ s t a t s ; // s t a t i s t i c s concern ing l ength and more . . .
6 } f i l e ;

Figure 2.1: The file structure

Of course, we need methods to unload the file. It can be done using the
munmap(2). It requires the size as parameter which justifies the presence of the
stat structure.

2.3 Decoding process

In this sub-part, we will be explaining the process that allows us to retrieve
information from a wave file and to play its audio. Jean Bou Raad with the
help of Kevin-Brian N’Diaye created this part.

2.3.1 Introduction to headers

Headers constitute the central piece of the puzzle to understand the data in a
file. They provide essential information such as the size of each sample (8-bits,
16-bits, 32-bits, 64-bits), the sampling frequency 1 (typical values are 44100,
48000, 96000 Hz), and more.

Using a hexadecimal file viewer, we can see that an audio file looks like this:

Figure 2.2: A typical wave file

1number of audio points taken when recording the audio

7

For any human being, it is mostly unreadable data. But, one can find
some patterns with the strings ”RIFF”, ”WAVE”, ”DATA”, ”INFO” appearing.
Those point the existence of metadata out. The standard defines those blocks of
data as chunks. There are a limited set of blocks with their specific definition:

1. RIFF: a short block which confirms the type of the file. It usually comes
out as the first block in a wave file.

2. FMT: short name for ”format”. It is a mandatory chunk which provides
the various characteristics of the audio. There are multiple variations of
this chunk.

3. LIST: Linked list chunk containing information on the file.

4. FACT: Short chunk which contains no useful information for our audio
player.

5. DATA: it contains the audio data (samples). The audio is either com-
pressed or uncompressed.

Various blocks and formats mean various implementations, challenges that we
have successfully overcome.

2.3.2 Parser: main execution loop

The objective of the parser is to go through the whole file to find each block of
data and assign it to structures that the program can manipulate.

Hence, the main process features a loop that iterates until it reaches the end of
the file. At each step, it will check if an identifier is here and do the appropriate
calls to sub-functions.

For each kind of block, a parsing method is available:

1. RIFF: riffParser

2. FMT: fmtParser

3. LIST: listParser

4. FACT: factParser

5. DATA: dataParser

They take as parameter the pointer to the index variable to move it accord-
ing to the block’s size. They also allocate memory for each structure which
are explained in the later parts. The main structure refers to each of these
substructures and are as follow:

8

1 // t h i s g en e r i c type conta in s a l l wav chunks
2 // Warning : some can be nu l l
3 typede f s t r u c t wav
4 {
5 r i f f ∗ r i f f ; // cannot be modi f i ed
6 union // s t o r e both types at the same p lace : memory e f f i c i e n t
7 {
8 fmt ∗ fmt ;
9 fm t f l o a t ∗ fm t f l o a t ;

10 fm t ex t en s i b l e ∗ fm t ex t en s i b l e ;
11 } ;
12 f a c t ∗ f a c t ; // op t i ona l : o f t en used f o r f l o a t
13 s t r u c t data ∗data ; // unvar iab l e
14 fmt type format ; // ca s t i ng he lpe r
15 l i s t ∗ l i s t ;
16 } wav ;

Figure 2.3: Definition of the main wave header structure

Reminder: in the C programming language, the union is used to refer to a
variable with multiple types. We use it here to gather three variations of the
fmt block. These elements are all pointers so they share a common size which
makes the union possible.

2.3.3 Parser: the RIFF chunk

The first chunk to parse is one of the easiest: the RIFF. As said in the introduc-
tion, it stands for Ressource Interchange File Format. It contains an identifier
which allows the parser to check that the file is really a WAV file2.
Focusing on the sample file from before, we can isolate the RIFF chunk to study
it:

Figure 2.4: RIFF chunk

It contains two visible strings: ”RIFF” and ”WAVE”. In the middle, it contains
the total size of the file minus the first 8 bytes. In the hierarchy of blocks, this
one sits on top of any other kind of block.

To reproduce that structure in the program, we defined the following struc-
ture:

2Otherwise it aborts the process

9

1 typede f s t r u c t r i f f
2 {
3 char r i f f [4] ; // conta in s 4 bytes
4 i n t f i l e S i z e ; // conta in s 4 bytes
5 char f i l eFormat Id [4] ; // conta in s 4 bytes
6 } r i f f ;
7

Figure 2.5: Riff structure definition

Riff and fileFormatId contain most of the time the strings ”RIFF” and
”WAVE” are without their null terminating byte. The process is really trivial
as you can see:

1 // R i f f chunk par s e r
2 // @param data : the mapped data in memory
3 // @param i : index in the f i l e
4 r i f f ∗ r i f f P a r s e r (unsigned char ∗data , s i z e t ∗ i)
5 {
6 r i f f ∗ r i f f = mal loc (s i z e o f (s t r u c t r i f f)) ;
7 s t rcpyn (data + ∗ i , r i f f −>r i f f , 4) ;
8 ∗ i += 4 ;
9 r i f f −> f i l e S i z e = intConversionLE (data + ∗ i) ;

10 ∗ i += 4 ;
11 s t rcpyn (data + ∗ i , r i f f −>f i l eFormatId , 4) ;
12 ∗ i += 4 ;
13 r e turn r i f f ;
14 }
15

Figure 2.6: Riff parsing function

As the data stream is made of bytes, it is not easy to retrieve the value of
multiple bytes. intConversionLE is a function that converts four bytes into an
standard integer. The process behind this function is explained in the next part.

10

2.3.4 Tool: merging bytes

As mentioned above, most of the characteristics strings are not null terminated.
This means that we cannot use unprotected functions from the standard libraries
(strlen to only give one example). We are doing many comparisons between
strings during the parsing process so an equivalent of strcmp was needed. Its
protected counterpart strncmp could have done the job just fine for most of
the tasks. However, we also need to support both little-endian and big-endian
representations of data. For instance, all strings are in big-endian representation
in the wave file format.

Hexadecimal value String
0x52494646 ”RIFF”
0x57415645 ”WAVE”
0x666d7420 ”FMT”
0x64617461 ”DATA”

Figure 2.7: Example of strings with their hexadecimal representation

Hence, we decided to go for the implementation of a byte merger with various
sizes: short, integer, long, and 128-bits integers. You can find below an example
of byte merging tool:

1 // Fast 4 bytes to i n t conver s i on (merging) BIG ENDIAN
2 // @param data : must be an at l e a s t 4 bytes long array
3 u i n t 3 2 t intConversionBE (unsigned char ∗data)
4 {
5 r e turn (data [0] << 24) | (data [1] << 16) | (data [2] << 8) | (

data [3]) ;
6 }
7

Figure 2.8: Conversion function from bytes to 32-bits integers

11

This solution is fast and safe. Also, it allowed the implementation of many
facilitating tools with enumerations and switches. For instance, to identify the
numerous information identifiers, we used an enumeration such that each value
is at the index of the identifier’s big-endian representation:

1 typede f enum i n f o I d s
2 {
3 IARL = 0x4941524C , // a r ch i v a l l o c a t i o n
4 IART = 0x49415254 , // a r t i s t
5 ICMS = 0x49434D53 , // commisionned
6 ICMT = 0x49434D54 , // comments
7 ICOP = 0x49434F50 , // copyr ight
8 ICRD = 0x49435244 , // c r e a t i on date
9 // skipped some codes (image r e l a t e d)

10 IGNR = 0x49474E52 , // genre
11 IKEY = 0x494B4559 , // keywords
12 INAM = 0x494E414D , // name
13 ISBJ = 0x4953424A , // content o f the f i l e
14 ISFT = 0x49534654 , // so f tware
15 ISRC = 0x49535243 , // source
16 IPRD = 0x49505244 , // Product
17 IPRT = 0x49505254 , // t rack id
18 } i n f o I d s ;
19

Figure 2.9: Enumeration of information identifiers

12

These give some easier-to-implement switches in our code to handle the
numerous cases:

1 // conver t s a 4−bytes s t r i n g in to an i n t e g e r va lue
2 switch (uintConversionBE ((unsigned char ∗) current−>i n f o I d))
3 {
4 case IARL :
5 f−>a r ch i v a l = current−>data ;
6 break ;
7 case IART:
8 f−>a r t i s t s = current−>data ;
9 break ;

10 // e tc . . . more ca s e s
11 case IPRD:
12 f−>product = current−>data ;
13 break ;
14 case IPRT:
15 s s c an f (current−>data , ”%d” , &f−>tracknb) ;
16 break ;
17 case ISBJ :
18 f−>album = current−>data ;
19 break ;
20 de f au l t :
21 warnx (”unknown a t t r i bu t e %s %s” , current−>i n f o Id ,

current−>data) ;
22 break ;
23 }
24

Figure 2.10: Example of simplified code thanks to the use of enumerations

If we had not implemented this solution, it would have been a lot of if and
else if statements with many strings comparisons. For this specific case, we
reduced the 13 series of comparisons to a long but fast switch statement.

However, some identifiers are 128-bits wide and cause some issues. GCC, our
compiler, does not fully support 128-bits integers. For instance, this declaration
will cause an error:

1 s t a t i c const u i n t 1 2 8 t PCMCODE2 =
2 0x000000010000001080000aa00389B71 ;

While this one will not:

1 const u i n t 1 2 8 t PCMFLOATCODE =
2 ((u i n t 1 2 8 t) 0x0300000000001000 << 64) | 0x800000aa00389b71 ;

GCC cannot directly evaluate literal 128-bits expression. Instead, we hack our
way in by generating an expression that respects GCC’s 64-bits limitation.

13

2.3.5 Parser: the FMT chunk

This part of the header is one of the most important part. FMT stands for
FORMAT. It can be extended to the notion of audio format which answers
these questions: how many bits per samples, are they compressed, the bitrate,
and more... It is crucial for playback because PulseAudio needs this information
to properly reproduce the sound correctly.

Basic format chunk

This part comes with some difficulties as there are three variations of that part
of the header. However, they all share common characteristics with this basis:

1 typede f s t r u c t fmt
2 {
3 char fmt [4] ; // format block id 4B
4 i n t b l o cS i z e ; // c l a s s i c 16b
5

6 unsigned shor t AudioFormat ; //2B see enum compress ion codes
7 shor t channel ; //2B
8

9 i n t samp l ing f r eq ; // 4B
10 i n t b i t r a t e ; // important 4B //number o f bytes to read per s ec
11 shor t b l o c r a t e ; //2B NbrChannels ∗ BitsPerSample /8
12 shor t samplerate ; //2B //8−16−24 b i t s
13 } fmt ;
14

Figure 2.11: The first FMT structure (V1)

This basic part of the header contains various attributes:

1. fmt: the ”FMT ” string without the null terminating byte

2. blocSize: this block’s size, for the basic FMT block it is 16 bytes.

3. AudioFormat: the wave file format is a container format which can hold
various kinds of compressions. Below you can find an enumeration of the
most used compression codes:

14

1 //most common compress ion modes f o r wav
2 enum compress ion codes
3 {
4 any = 0 , // i f the format doesn ’ t need t h i s i n f o
5 PCM = 1 , // used
6 ADPCM = 2 ,
7 PCM float = 3 , //might be used f o r 32−64 b i t s formats
8 alaw = 6 ,
9 Amu law = 7 ,

10 IMAADPCM = 17 ,
11 Yamaha = 20 ,
12 GSM = 49 ,
13 G721 = 64 ,
14 MPEG = 80 , // used
15 WaveFormatExtensible = 65534 , // used
16 Experimental = 65536 ,
17 } ;
18

Figure 2.12: Compression codes for the Wave format

4. Channel: the audio can be mono (1), stereo (2), or multi-channel.

5. Sampling frequency: the number of samples taken per second (Hz). Typ-
ical values are 44100 Hz, 48000Hz, 96000Hz.

6. BitRate: the number of bits required to have one second of audio.

7. BlocRate: the number of bytes per block with the number of channels
taken into account in the computation.

8. sampleRate: the bit-depth, represents the quality of each sample. This
value is usually 8-bits, 16-bits, 32-bits, 64-bits with more being better
quality. From 32-bits, it is often PCM float data and not regular integer
data.

15

PCM-Float format chunk

If the file has a float-PCM data, the FMT contains more data. The structure
is as follows:

1 // 18 bytes fmt block f o r IEEE f l o a t PCM
2 typede f s t r u c t fm t f l o a t
3 {
4 char fmt [4] ;
5 i n t b l o cS i z e ; // w i l l be 18
6

7 unsigned shor t AudioFormat ;
8 shor t channel ;
9

10 i n t samp l ing f r eq ;
11 i n t b i t r a t e ;
12 shor t b l o c r a t e ;
13 shor t samplerate ;
14 // a l l o f the above i s the same
15 shor t wExtSize ; // new a t t r i bu t e
16 } fm t f l o a t ;
17

Figure 2.13: FMT float variation (V2)

WExtSize is an extra attribute that is not used anywhere in the project.

WaveExtensible format chunk

In one of its revisions, Microsoft introduced an extended header with new meta-
data. This extra metadata allows more flexibility and adapts the format to
the relatively new technologies3. This variation is more interesting because it
contains interesting metadata.

To recognize this variation, we can check the blocSize attribute (40 bytes instead
of 18) or check the compression code which will be 65534 (see figure 2.12).

The variation is as follows:

3We are talking about Windows 2000 (February 2000), new...

16

1 // 40 bytes b loc WAVE EXTENSIBLE
2 typede f s t r u c t fmt ex t en s i b l e
3 {
4 char fmt [4] ;
5 i n t b l o cS i z e ; // w i l l be 40
6

7 unsigned shor t AudioFormat ;
8 shor t channel ;
9

10 i n t samp l ing f r eq ;
11 i n t b i t r a t e ;
12 shor t b l o c r a t e ;
13 shor t samplerate ;
14 // above i s nothing new
15 shor t e x t e n s i o n s i z e ; //sub−block s i z e
16 shor t v a l i d by t e s p s ;
17 i n t channel mask ; // new i nd i c a t o r f o r surround sound with

multi−channe l s support
18 char sub format [1 6] ; // conta in s the new format i d e n t i f i e r
19 } fm t ex t en s i b l e ;
20

Figure 2.14: Wave Extended format chunk (V3)

This extension uses the compression code to highlight its existence. Hence,
without further parsing, the program is unable to recognize which format. The
compression code is in another place: sub format which is 16 bytes long (128-bits
long). We implemented only a few compression codes because 128-bits integers
are complicated to handle in C99 as mentioned in part 1.2.4.

Hexadecimal value FORMAT
0x0100000000001000800000aa00389b71 PCM
0x0300000000001000800000aa00389b71 PCM FLOAT

Figure 2.15: Compression code

Handling variations

To handle these variations in the code easily, we use union as explained at figure
2.3. The first version of the block is common to the other variations. Hence, this
part is shared in memory, which means that whatever the variation, the basic
header is filled with at least this information. Then, using a casting helper, we
can access more data if it is available. This solution is memory efficient, fast,
and easy to implement.

17

2.3.6 Parser: the FACT chunk

This chunk is short and contains minor information. It is as follows:

1 typede f s t r u c t f a c t
2 {
3 char f a c t [4] ; //”FACT”
4 i n t chunk s i z e ; // 4B
5 i n t nb samples ;
6 } f a c t ;
7

Figure 2.16: Typical FACT structure declaration

2.3.7 Parser: the DATA chunk

This chunk is essential because it contains audio samples.

1 typede f s t r u c t data
2 {
3 char data [4] ; // ”DATA”
4 i n t data bytes ; //number o f bytes in the data chunk
5 unsigned char ∗chunk ; // entry po int f o r r e a l data
6 } data ;
7

Figure 2.17: Typical DATA structure declaration

Using the bitrate fromm the FMT chunk and the attribute data bytes, the
program can guess the total duration of the audio file.

2.3.8 Parser: the LIST chunk

The list is specific in terms of structure. It indicates the beginning of a list of
elements inside the current block. It has no predefined size. Its main purpose
is to hold information about the music itself. For instance, it can contain the
title, the album, the date of publication, the software used to encode the file,
and more... This block is optional.

The variable nature of this block led to a special structure. We adopted a
linked list with a sentinel to parse the data.

18

1 // Contains var i ous i n f o
2 // l i nked l i s t with s e n t i n e l s t r u c tu r e
3 typede f s t r u c t i n f o
4 {
5 char i n f o I d [4] ;
6 unsigned i n t s i z e ;
7 char ∗data ;
8 s t r u c t i n f o ∗next ;
9 } i n f o ;

10

11 typede f s t r u c t l i s t
12 {
13 char l i s t [4] ;
14 i n t chunk s i z e ;
15 unsigned char ∗data ;
16 s t r u c t i n f o ∗ i n f o s ;
17 } l i s t ;
18

Figure 2.18: Definition of the INFO and LIST chunks

Each node contains an identifier. It says what the data is about (see figure
2.9).
We implemented methods to allocate and free the linked list.

19

2.4 Encoding process

This is part was done by Kevin-Brian N’Diaye, with Thanh Lam Nguyen’s
participation on the GUI linking. This part will mostly be based on the parser
used by the WAV encoding part.

What we needed to do for the first part was being able to take a WAV file
and recreate the same file using our parser.

As this part is modular, it will flow directly into the next part: Adding more
information given by the user.

First of all, we split the WAV file into two:

1. The .raw file containing the data section of the parser.

2. The new file containing the new header.

Keeping the raw signal will be really useful for the conversion support. How-
ever, important information such as:

1. Audio type (type of signal)

2. Channels

3. Estimated duration

Without those information, the signal won’t be read correctly no matter
what the format. In the future, a structure allowing an easy flow of those
information from a format to another will be very useful for conversion support.

Encoding an intact WAV file was quite straight forward but changing it had
its challenges.

Thus, we will encode the data based on the WAV EXTENSIBLE convention
which looks like this using Okteta.

Figure 2.19: WAV EXTENSIBLE header format

20

The WAV EXTENSIBLE stems from the XMP metadata convention where
the storage of metadata in files follows a few rules:

1. The first part of a chunk is its tag then its size

2. 3 null bytes will follow the size of the current chunk

3. If the size of the chunk is odd, a null bytes is added to balance everything
out. (It’s called padding)

4. And the rest contains conventions for what to name each chunk (artist,
genre and etc...)

2.4.1 Writing the new header

Using the terminal and now the GUI, we can add new information to the file.
Things like:

1. The archive location

2. The artist

3. Copyrights

4. Creation date

5. Genre

6. Title

7. etc..

Basically, any new information gets added to the linked list called list. It
contains information about the music itself which can be lacking for certain files.

The function write header uses the fd from the new file called old file 2.wav
and a new header (either from the old file or the user).

The main function in the encoding process is called:

1 void write wav (char ∗ r aw f i l e , char ∗∗new wav , s t r u c t wav ∗header) ;

We can now expand around this function with other function either supplying
the necessary parts or using it to implement it in the GUI.

1 void wr i te raw (char ∗path , char ∗∗ r aw f i l e , s t r u c t wav ∗header) ;

This function simply creates a new raw file with the PCM signal.
Because PCM signal are uncompressed, we are dealing with a large amount

of bytes. Therefore, two functions were written to avoid errors or worse, signal
corruption.

21

1 // s a f e wr i t e
2 void r ewr i t e (i n t fd , const void ∗buf , s i z e t count , char ∗ err msg)
3 {
4 i n t r ;
5 s i z e t o f f s e t = 0 ;
6 whi le (o f f s e t < count)
7 {
8 r = wr i t e (fd , buf + o f f s e t , count − o f f s e t) ;
9 i f (r == −1)

10 {
11 r = errno ;
12 e r rx (EXIT FAILURE, ” f a i l e d to wr i t e %s in to fd : %s ” ,

err msg , s t r e r r o r (r)) ;
13 }
14 i f (r == 0)
15 {
16 break ;
17 }
18 o f f s e t += r ;
19 }
20 }
21

22 // s a f e read
23 void re read (i n t fd , void ∗buf , s i z e t count , char ∗ err msg)
24 {
25 i n t r ;
26 s i z e t o f f s e t = 0 ;
27 whi le (o f f s e t < count)
28 {
29 r = read (fd , buf + o f f s e t , count − o f f s e t) ;
30 i f (r == −1)
31 {
32 r = errno ;
33 e r rx (EXIT FAILURE, ” f a i l e d to read %s from fd : %s ” ,

err msg , s t r e r r o r (r)) ;
34 }
35 i f (r == 0)
36 {
37 break ;
38 }
39 o f f s e t += r ;
40 }
41 }

They work based on the server programming practical but some changes
were made to improve error handling. The err msg parameter is there to help
us spot which part of the encoding process failed and the errno integer gives us
additional information on the error.

22

1 // wr i t e s n nu l l bytes f o r spac ing
2 void wr i t e spa c e (i n t fd , s i z e t n)
3 {
4 f o r (s i z e t i = 0 ; i < n ; i++)
5 {
6 unsigned char hex = 0x0 ;
7 i f (wr i t e (fd , &hex , 1) < 0)
8 {
9 e r rx (1 , ” encode : wr i t e spac ing f a i l e d ”) ;

10 }
11 }
12 }

2.4.2 GUI version

The linking is part of the second and final version of the WAV encoding.
When the only thing the codec does is copy-paste, there’s no point in using it
which renders our work useless.
Additionally, if it’s useless to the user it doesn’t have its place in the GUI and
thus, the final part.

Therefore, we needed a way to link the WAV codec to the GUI.

Adding information

The main reason someone might want to tinker with audio files to begin with
is to add new information which is what we will do with the WAV codec.

The user will be able to change and/or add information from the file if they
choose to do so.

The information is ”limited” to header → list → infos linked list as it
contains most of the metadata.

1 f o r (; cur r ent != NULL; cur rent = current−>next)
2 {
3 i n t a r t = strncmp (current−>i n f o Id , ”IART” , 4) ;
4

5 i f (a r t == 0 && strcmp (argv [0] , ”No changes \n”) != 0)
6 {
7 unsigned i n t d i f f = s t r l e n (argv [0]) − s t r l e n (current−>

data) ;
8 current−>s i z e += d i f f ;
9 header−> l i s t −>chunk s i z e += d i f f ;

10 header−>r i f f −> f i l e S i z e += d i f f ;
11 current−>data = argv [0] ;
12 check [0] = 1 ;
13 cont inue ;
14 }
15 }

This template mostly explains how we can update the information from the
info list.

The parameters are the list of arguments called argv which the info given
by the user. It follows a convention we created which goes as follow:

23

0 Artist

1 Copyrights

2 Genre

3 Name

4 Album

If no information is given by the user, no information is updated. If the
element already exists (artists, name, etc...), it’s just being replaced after some
updates to every relevant size parameter. The check list needs to know whether
the string was used.
Otherwise, we have to the create the element ourselves like so:

1 s t rcpyn ((unsigned char ∗) ”IART” , (char ∗) a r t i s t −>i n f o Id , 4) ;
2 a r t i s t −>s i z e = s t r l e n (argv [0]) ;
3 a r t i s t −>data = argv [0] ;
4 a r t i s t −>next = NULL;
5 header−>r i f f −> f i l e S i z e += a r t i s t −>s i z e ;
6 header−> l i s t −>chunk s i z e += a r t i s t −>s i z e ;
7 current−>next = a r t i s t ;
8 cur rent = current−>next ;

Mostly the same thing but here we have to use the linked list structure
carefully as to not lose any data by simply replacing a node instead of adding
one to the list. The relevant size parameters are still being updated and we can
write all that new information to a new file.

Linking

How do we link those functions to the GUI then? We create a button to show
different fields where the user can change them, press enter and have those
changes written into a new file.

Those fields will not be empty if the information already exists. Here’s what
it looks like for the final version:

Figure 2.20: New window to input new information

24

2.4.3 Software used

Because a broken header results in broken audio, we had to use a new software
to read the raw data itself to debug our progress.

We used Okteta, a raw data editor. It allowed to see where and how the
data is assembled in the header. But most importantly, it allowed us to debug
our functions for the WAV encoding.

For example, we noticed that 3 null bytes would be written after every chunk
size.

2.5 Conclusion

The WAV codec has been a great introduction to audio codecs. Some metadata
convention was present and resources were sufficient. It allowed us to use great
tools like Okteta, multithreading and low-level I/O on a middle size project. We
were not able to transfer those experiences to a full MP3 codec which was our
biggest regret. In the end, learning about codecs has been a great experience
for us as it taught about low-level I/O.

25

Chapter 3

PulseAudio -
Multi-threaded API

A major part of our project is about being able to provide an audio-playback
experience. In the C programming language, there are multiple tools able to do
that1. They vary from very low level to high level when it comes to communi-
cating between the program and the audio drivers. As a compromise, we chose
PulseAudio for that.

PulseAudio is a software provided on many Linux distributions. It handles
the audio playback between software and drivers via a server. It also provides
an C API, which enables communication between programs and the audio server
running.

The API provides both synchronous and asynchronous methods with a multi-
threaded of the last one. Our project integrates a GUI which needs to run while
playing back the audio. Hence, we needed an asynchronous implementation
with multi-threading. However, PulseAudio’s API/library is thread aware but
not thread-safe2. It means that the implementation needs more care to ensure
its stability.
In this part, we will go in the details of this complicated process with various
examples.
The main developer on this part is Jean Bou Raad.

3.1 Definitions

This part is essential, we explain essential types and we will not ex-
plain them in later parts!

1GStreamer, Alsa, and more...
2https://www.wikiwand.com/en/Thread_safety

26

https://www.wikiwand.com/en/Thread_safety

Before going into the code implementation of the audio player, some defini-
tions need to be provided.

In PulseAudio’s library, one can find various objects with their role. Below,
you can find a short definition of each types:

1. pa threaded mainloop (mainloop): A thread based event loop implemen-
tation based on pa mainloop. The event loop is run in a helper thread in
the background. A few synchronization primitives are available to access
the objects attached to the event loop safely. It can act as a mutex for
object access. This type plays a major role in thread safety.

2. pa stream (stream): An opaque type for playback. Objects of this type
communicate audio samples to the server. It also provides useful informa-
tion during playback (latency, volume, and more...)

3. pa context (context): An opaque type used to retrieve information about
an audio server.

3.2 Main steps of implementation & features

This part of the project has for sole purpose playing back audio. This is not a
trivial process. Here are the major steps:

1. Creating a mainloop.

2. Connecting to the default audio server.

3. Creating a stream that links a pipe to a server.

4. Draining the stream or interrupting it.

In addition to these main steps of implementations, we implemented some ad-
ditional features:

1. Volume: we implemented methods that change the volume and gets the
current one from the PulseAudio server.

2. Latency: we implemented a function that retrieves the current latency
from the software to the audio server. It is essential for accurate timestamp
computation.

3. Multiple formats support: PulseAudio can only take PCM audio in (raw
signal). Compressed formats are not supported by the library3.

We will review each steps and features in the parts below.

3except when using pass-through (the device can decode the compressed signal)

27

3.3 Storing objects in structures

PulseAudio’s library comes with a variety of objects and types. They have vari-
ous uses and can vary from one context to another. We mentioned in the second
report a rework that focused on that matter because the organization was bad.

Our final structures separate objects in two categories: variable and static.
Static objects are the ones that we need to initialize once in the program’s
lifetime. The variable objects are the ones that can change between tracks for
instance.

The following structures are the ones mainly used:

1 typede f s t r u c t pa p laye r
2 {
3 wav player ∗ p laye r ; // va r i ab l e ob j e c t s
4 pa ob j e c t s ∗pulseAudio ; // s t a t i c ob j e c t s
5 pa in f o ∗ i n f o ; // f o r volume
6 s t a t e pa s t a t e ; // g l oba l PulseAudio State
7 f i l eType type ;
8 } pa p laye r ;
9

Figure 3.1: PulseAudio player structure definition

1 // Per t rack data , w i l l change over the program ’ s l i f e t im e
2 typede f s t r u c t wav player
3 {
4 wav ∗ i n f o ; // conta in header and data po i n t e r s f o r the f i l e

played
5 f i l e ∗ t rack ; // I /O a t t r i b u t e s
6 unsigned char ∗data ; // po in t s to the beg inning o f the audio

samples
7 pa stream ∗ stream ; // Opaque PulseAudio ob j e c t to launch

ope ra t i on s
8 dra in ∗ dra ine r ; // ho lds in fo rmat ion about the dra in ing s t a tu s
9 pa time ∗ t iming ; // po s i t i o n in the cur rent f i l e , l a t ency

10 p laye rS ta tus s t a tu s ; // see enum
11 } wav player ;
12

Figure 3.2: Variable objects: wav player structure

28

1 // S t a t i c PulseAudio ob j e c t s during the program ’ s l i f e t im e
2 typede f s t r u c t pa ob j e c t s
3 {
4 pa context ∗ context ;
5 pa threaded mainloop ∗ loop ;
6 pa main loop api ∗ api ;
7 char ∗ s ink ;
8 p a s e r v e r i n f o ∗ s e r v e r ;
9 } pa ob j e c t s ;

10

Figure 3.3: Static objects: PulseAudio objects structure

As you can see, the objects are separated clearly between static and variable
elements. Everything is dynamically allocated. We have methods that do these
memory allocations with standard error handling.

3.4 Implementation

3.4.1 Multi-threading, callbacks, signals: how it works

As mentioned above, PulseAudio’s library relies on deferred callback4 to give
data about its state. They are essential when using multi-threading if we want
to convert asynchronous operations into synchronous ones. Let’s see an example
of that principle in action:

1 void getDe fau l tS ink (pa p laye r ∗ p laye r)
2 {
3 pa ob j e c t s ∗pa = player−>pulseAudio ;
4 pa threaded main loop lock (pa−>loop) ;
5 pa operat i on ∗op = pa c o n t e x t g e t s e r v e r i n f o (pa−>context , &

ca l lbackS ink ,
6 p laye r) ;
7 whi le ((s t a t e = pa op e r a t i o n g e t s t a t e (op)) !=

PA OPERATION DONE)
8 {
9 pa threaded main loop wait (pa−>loop) ;

10 }
11 pa ope ra t i on un r e f (op) ;
12 pa threaded main loop unlock (pa−>loop) ;
13 }
14

Figure 3.4: A typical asynchronous callback function converted into synchronous
code

4see https://www.wikiwand.com/en/Callback_(computer_programming)

29

https://www.wikiwand.com/en/Callback_(computer_programming)

This code is as generic as it gets. First, we lock the mainloop just like a
mutex. This avoids race conditions by preventing the access to PulseAudio’s ob-
jects. Then, we launch our asynchronous operation. It can be any function that
returns an operation object. However, here it is the pa context get server info
function. The prototypes vary from one operation to another but we always
find as parameter a function (here the second parameter). This is the function
called when the operation is done (it can fail). This callback has a very impor-
tant function, it can send a signal which unlocks the loop at line 9. Once, the
operation is done, we can unreference the object and unlock our mainloop.

1 void ca l l backS ink (pa context ∗c , const p a s e r v e r i n f o ∗ i , void ∗
userdata)

2 {
3 a s s e r t (c) ;
4 pa p laye r ∗ p laye r = userdata ;
5 pa ob j e c t s ∗pa = player−>pulseAudio ;
6 i n t e r r o r = a s p r i n t f (&(pa−>s ink) , ”%s ” , i−>de fau l t s ink name) ;
7 i f (e r r o r <= 0)
8 e r r (errno , ”Couldn ’ t copy s ink name”) ;
9 // t h i s s i g n a l unlocks the wai t ing func t i on

10 pa threaded ma in l oop s i gna l (pa−>loop , 0) ;
11 }
12

Figure 3.5: Typical deferred callback associated to figure 3.4

This is the simplest example. We will see in later parts that sometimes we
must handle operations differently. However, parts of the skeleton you have seen
remains.

3.4.2 States

Using multi-threading implies many safety issues, especially when running par-
allel tasks. The last part explained how we prevent race conditions. However,
we did not explain how we avoid invalid operations. This is crucial because it
avoids many crashes. For instance, trying to kill a stream which does not exist
leads to a segmentation fault. The solution is quite trivial: when the mainloop is
locked, the player contains a few attributes that provide information on its state.

First, the structure pa player has the pa state variable of type state. State
is an enumeration with these caracteristics:

30

1 typede f enum s t a t e
2 {
3 BABY, // be f o r e mainloop i n i t
4 READY, // be f o r e stream i n i t
5 ACTIVE, // whi l e p lay ing /paused
6 TERMINATED, // k i l l e d stream but t rack in memory <=> ready
7 FINAL, // k i l l e d mainloop
8 } s t a t e ;
9

Figure 3.6: The state enumeration for the PulseAudio player structure

The states READY and TERMINATED are equivalent, meaning that we
can go from one to another. Only the FINAL state is definitive. These states
refer mainly to PulseAudio’s objects’ states.

The ACTIVE state means that a wav player is currently playing audio. To
know if it is playing, paused, or not ready, we implemented an enumeration. It
is a subset of the ACTIVE state.

1 typede f enum playe rS ta tus
2 {
3 NOTREADY, // i f s t a t e i s != ACTIVE
4 PLAYING, // can be dra ined
5 PAUSED, // corked stream
6 } p laye rS ta tus ;
7

Figure 3.7: The player status enumeration

We will display the player’s states during each operation with a table. If the
original state do not match the player’s ones then the program will abort the
operation.

3.4.3 Creating a PulseAudio player using the library

As we said before, our implementation requires multi-threading. PulseAudio
provides a thread-aware mainloop in its API which acts as mutex in addition to
its event polling role. To initialize our PulseAudio player, we follow those steps:

1. Create a threaded mainloop with pa threaded mainloop new.

2. Get the API associated to the new mainloop via pa threaded mainloop get api

3. Create a new context using the new API with pa context new

4. Start the threaded mainloop

5. Connect the context to the device (sink) with pa context connect

31

6. Wait for the context to be ready using deferred callbacks

7. When the state is PA CONTEXT READY, we can return. Our player is
almost to play files!

The player states are:

Entity Initial State New State
pa player BABY READY
wav player NOT ACTIVE NOT ACTIVE

3.4.4 Creating a stream from a Wave file

We need to initialize the playback on PulseAudio to create a stream. The
function in charge of doing that process is as follows:

1 i n t prepareStream (pa p laye r ∗ p laye r) ;
2

Figure 3.8: The prepare stream function

To create a classic stream, one needs:

1. An already parsed wave file: the wav player must hold a file with its data
and characteristics. The steps below depend on this.

2. Sample specifications: they come from the file that we need to read. For
this, we created a function that matches the characteristics of a wave file
to its pa sample spec.

3. A channel mapping: the type pa channel map represents the channel char-
acteristics of a file. Briefly, it tells PulseAudio if the stream will be mono
or stereo.

4. Buffer attributes: it gives PulseAudio information on how one wants to
handle the buffer. For our project, we tell PulseAudio to process it auto-
matically. It can be for audio streaming software (network streams).

5. Flags: they tell PulseAudio how to handle the stream in various ways.
Most of them are used to tell the library to handle the things by itself
(latency, timings, for instance). Those features are headed towards server
developers.

6. Finally, by using pa stream new extended and pa stream connect playback,
we can create a stream and connect it to the device (sink).

This process is long. And with multi-threading in mind, we need to integrate
state-checking. Its goal is preventing any invalid operation on the player. Here,
that can be creating a new stream while one is still playing, or trying to create

32

1 void c a l l b a c k w r i t e (pa stream ∗ stream , s i z e t r eques ted byte s , void
∗ userdata) ;

Figure 3.9: Declaration of PulseAudio write callback function

a player without the required objects initialized.

The player states are as follows:

Entity Initial State New State
pa player READY or TERMINATED ACTIVE
wav player NOT ACTIVE PAUSED5

3.4.5 Sending audio samples to play sound

This part is critical because it must be fast and reliable. The callback function
is as follows: The library provides the two first parameters. We can choose
freely the last one. The process is as follows in a while loop till we have written
on the buffer the requested bytes:

1. Determine the number of bytes we want to write: this can be arbitrary.

2. Initialize a buffer with pa stream begin write. It handles memory alloca-
tion automatically.

3. Fill the buffer with data from the file. It can be accessed through the
pa player structure, via the wav player, and the wav object inside. The
block DATA contains a pointer to it. For simplicity, the reference is copied
directly as an attribute of wav player (see fig. 3.2).

4. Write it to the real buffer with pa stream write.

5. Update the offset for the file and the number of bytes written.

We do not need to check for states in this operation. PulseAudio calls it auto-
matically when needed (acts as a deferred callback).

3.4.6 Pausing & Resuming audio

In the essential set of features, we have the playing and pausing functionality.
PulseAudio provides methods to do these operations. The method used for both
of them is pa stream cork. It is an asynchronous callback that we transformed
into a synchronous ones to change states. The updated states are as follows:

33

Entity Initial State New State
pa player ACTIVE ACTIVE (no change)
wav player PAUSED PLAYING6

If the initial states requirements are not met by the player, the program will
give warnings and abort the operation.

1 // we f i r s t l o ck the mutex be f o r e a c c e s s i n g v a r i a b l e s
2 pa threaded main loop lock (pa−>loop) ;
3 i f (p layer−>pa s t a t e != ACTIVE)
4 {
5 warnx (”Pause : no stream playing , can ’ t stop playback . . . ”) ;
6 pa threaded main loop unlock (pa−>loop) ;
7 r e turn ;
8 }
9 i f (p layer−>player−>s t a tu s != PLAYING)

10 {
11 warnx (”Pause : a l r eady paused . . . ”) ;
12 pa threaded main loop unlock (pa−>loop) ;
13 r e turn ;
14 }

Figure 3.10: State checking in the pausing function

3.4.7 Terminating & Draining a stream

Terminating a stream is an important operation. It must be handled correctly
because it can create critical bugs.

The operation itself of terminating a stream is fairly straightforward. We
just created a function that runs an asynchronous operation with the func-
tion pa context suspend sink by name, then we can disconnect the stream with
pa stream disconnect.

The problematic is not how but when. Indeed, PulseAudio cannot determine
when a stream is done. So, to prevent a situation where we have audio samples
left to play, we must drain the audio buffer before killing the stream.

PulseAudio provides built-in function to drain a buffer. It is again an asyn-
chronous operation. However, it is more complicated than previous operations.
Indeed, the draining operation fails after a certain amount of time if we still
feed the buffer. In the most basic situations, it does not happen. However, if we
rewind in the track (see section on offsetting) while that operation is running,
the draining fails. To solve this particular issue, we implemented a structure
which contains the draining operation and the draining states. They are as
follows:

34

1 typede f enum DrainStatus
2 {
3 DRAIN INACTIVE, // no opera t i on running
4 DRAIN ACTIVE, // operat i on running −> p lay ing s t a t e
5 DRAIN FINISHED, // can i n t e r r up t stream
6 } DrainStatus ;
7

8 // Object used to t rack dra in ing proce s s
9 typede f s t r u c t dra in

10 {
11 DrainStatus s t a t e ; // enumeration
12 pa operat i on ∗ dra in ; // PulseAudio opera t i on
13 } dra in ;

Figure 3.11: Structure and enumeration linked to 3.2

With these structures introduced, we can now provide the expected states
for each object before the draining operation:

Entity Initial State New State
pa player ACTIVE ACTIVE
wav player PLAYING PLAYING
drain DRAIN INACTIVE DRAIN FINISHED

During the operation, the drain has a state at DRAIN ACTIVE. As usual, if
the player does not meet those conditions, it will abort the operation and return
safely.

In addition to this implementation of states, we added a way to cancel the
operation if needed. It is something unique in our code in terms of structure.
Indeed, the drain function wrapper works as a synchronous function to update
states correctly. Hence, we need to use another thread to cancel the opera-
tion and then handle correctly the cancellation on the main thread. The cancel
function is as follows:

1 void cance lDra in (pa p laye r ∗ p laye r)
2 {
3 wav player ∗pa = player−>p laye r ;
4 // s t a t e check ing removed f o r s imp l i c i t y
5 pa ope r a t i on canc e l (pa−>dra iner−>dra in) ;
6 pa threaded ma in l oop s i gna l (p layer−>pulseAudio−>loop , 0) ;
7 }

Figure 3.12: The cancelDrain function (asynchronous operation)

This function can only work with those particular states:

35

Entity Expected
pa player ACTIVE
wav player PLAYING
drain DRAIN ACTIVE

As you can see in the snippet of code, we cancel the operation, then send a signal
to the mainloop. It unlocks the main thread which will check the operation’s
state. If it is indeed cancelled, it restores the player to its previous state:

1 pa op e r a t i o n s t a t e t s t a t e ;
2 whi le ((s t a t e = pa op e r a t i o n g e t s t a t e (op)) !=

PA OPERATION DONE)
3 {
4 // i f the operat i on i s c an c e l l e d by another thread
5 i f (s t a t e == PA OPERATION CANCELLED)
6 {
7 warnx (”drainStream : c an c e l l e d opera t i on . . . ”) ;
8 // we r e s t o r e the c a l l b a ck s
9 pa s t r e am s e t w r i t e c a l l b a c k (player−>player−>stream , &

ca l l b a ck wr i t e , p laye r) ;
10 // cleanup the memory
11 pa ope ra t i on un r e f (op) ;
12 player−>player−>dra iner−>dra in = 0 ;
13 player−>player−>dra iner−>s t a t e = DRAIN INACTIVE;
14 // unlock our mutex
15 pa threaded main loop unlock (pa−>loop) ;
16 // re turn s a f e l y
17 r e turn ;
18 }
19 // be f o r e the s i g n a l from cance lDra in
20 pa threaded main loop wait (loop) ;
21 }

Figure 3.13: Extract of the drain function (see 3.4 for reference)

What remains is the stream termination. This process is not difficult and in-
volves no particular notions. For reference, see pa context suspend sink by name
in PulseAudio’s documentation.

3.4.8 Offsetting: back and forth in the tracks

Offsetting is one of the most complicated operations on PulseAudio. It is user-
input based and can happen at any time during playback.

There are multiple ways to approach the problem. For instance, we could
modify our way of writing by writing on the buffer’s reading offset. This is
complicated, so, we went for the easiest choice: we flush the buffer and write
new samples according the new offset. PulseAudio provides an asynchronous
operation to do that: pa stream flush. We need to update the reading offset
then. The operation’s core is as follows:

36

1 pa operat i on ∗op = pa s t r eam f lu sh (player−>player−>stream , &
cb seek ing , p laye r) ;

2 whi le (p a op e r a t i o n g e t s t a t e (op) != PA OPERATION DONE)
3 pa threaded main loop wait (pa−>loop) ;
4 pa threaded main loop unlock (pa−>loop) ;
5

6 // o f f s e t computation with block al ignment
7 player−>player−>timing−>o f f s e t =
8 o f f s e t − o f f s e t % player−>player−>i n fo−>fmt−>

samplerate ;
9

Figure 3.14: Snippet of the relative function

Line 7 is particularly interesting as it provides a little insights on the way
audio we read audio. We must align it to the locks size. Otherwise, it degrades
the audio quality or can corrupt it completely.

Before rewinding the audio, we must make sure that a draining operation is
not running to avoid errors. Therefore, we check the states and cancel the oper-
ation if needed using the function described in figure 3.12. The expected states
are:

Entity Initial State Temporary State New State
pa player ACTIVE - ACTIVE
wav player PLAYING PAUSED PLAYING
drain INACTIVE or ACTIVE DRAIN INACTIVE INACTIVE

If the drain’s state is active, we cancel the draining operation.

To conclude, thanks to the precautions we took, this operation is stable and
reliable. The states’ rework for second defense is handy when it comes to the
operation.

3.4.9 Volume

PulseAudio comes with volume management built-in. The documentation ad-
vises explicitly not to modify system volumes with the library. The main reason
is that volume scales differently from device to device.
Hence, we implemented a way to modify the volume of the input of our stream.
PulseAudio implemented the volume as a double structure. Indeed, for multi-
channel audio, PulseAudio can set a specific volume per channel (for instance,
one for the left ear and another for the right). Each channel (represented by
the structure pa cvolume) has a pa volume t attribute which is the real volume
of the current channel object. They are stored in an array in the pa cvolume
structure. The function to modify the volume works as follow:

37

1 void getVolume (pa p laye r ∗ p laye r) ;
2 void setVolume (pa p laye r ∗ p laye r) ;

Figure 3.15: two prototypes used to interact with the volume via PulseAudio

Information about the current volume of our player is stored in our structure
pa info:

1 typede f s t r u c t pa i n f o
2 {
3 // modify that va lue to change the volume
4 // must be a double between 0 .0 and 1 .0
5 double volume ;
6 // s ink input id
7 u in t 32 t id ;
8 } pa in f o ;

Figure 3.16: Declaration of the PulseAudio information structure

The attribute id is an unique identifier used to retrieve the volume attached
to the stream. As mentioned before, this is not a system global variable. The
volume is modified by the mainly modified by the GUI.

3.4.10 Timestamps

Like any regular audio player, we need to know the current timestamp while
playing a file. It might look like a simple process, but It can be tricky. Indeed,
the way to get the current timestamp of a played file is to divide the offset
by the bitrate (number of bits per second of audio). However, this method is
inaccurate. Indeed, PulseAudio is fed with audio data ahead of time. That
means that the offset is always farther in the buffer than the audio currently
played.
And so, getting latency is key. As usual, PulseAudio did not provide a guide to
do it. Hence, there were many difficulties. We ended up using a simple function
from the library pa stream get latency. It retrieves pa usec t data, which is a
long integer representing the number of microseconds of latency. With some
more computations, we were able to retrieve the correct timestamp:

38

1 // cur rent read ing timming as a double , f o r i n s t ance we read the
2 .0 s sample

2 double t iming = pulseAudio−>player−>timing−>time ;
3 // conver t s to microseconds (mu l t i p l i e s by 10∗∗6)
4 t iming ∗= power ;
5 // removes l a t ency
6 double wLatency = timing − (double) ∗(pulseAudio−>player−>timing

−>l a t ency) ;
7 // cur rent i s a complet ion percentage (0−100%, 0 i s the beg inning

and 100 the end)
8 double cur rent = wLatency/power ;

Figure 3.17: Accurate timestamp computation

3.4.11 MP3 and other formats playback

Due to high complexity of decompression, especially with the number of al-
gorithms involved, we decided to avoid doing decompression. This led to the
implementation of a fast audio decoder for compressed formats.

To do this, we are using Gstreamer, a library from the Gobjects family (like
GTK) to decode audio. Indeed, gstreamer is specialized in media handling with
numerous plugins and capacities. We use these plugins:

1. filesrc: retrieves data from a file

2. decodebin: decodes the audio data

3. audioconvert: converts the audio data (PCM)

4. wavenc: encodes the raw data to wave style format file.

5. giostreamsink: fake sink to retrieve data from it

This library shares similarities with PulseAudio and GTK in its functioning.
One important note, usually, the output of a file conversion is another file. How-
ever, we do not want to leave trash files. So, we used a fake sink to retrieve data
and then play it.
The data retrieved is a WAV file. So, it can be combined by the program with
the existing functions to play the audio.
The process can be slow. However, this was the best solution to build a com-
plete audio player.

Warning: some of the required modules are not on EPITA’s computer by default.
Playback will fail in that case.

39

3.5 Conclusion

To conclude, PulseAudio is a great library. It offers many features and great
freedom to developers by giving them choices in ways to implement features.
However, it is sometimes a trap: documentation & examples lack on the internet.

Through the implementation of the multi-threaded music player, we consoli-
dated many skills around multi-threading. It is the result of long struggles and
can eventually lead to weird crashes due to race conditions7.

Moreover, this part of the project is vast. We began with the most basic features
(pure playback) and ended up with more complex ones (offsetting, volume).
Implementing features on top of an already existing system can be somewhat
difficult. However, if the code is built with maintenance and legibility in mind,
then it becomes easier.

We mentioned GStreamer as our reference for other file format decoding, but in
fact this part of the project is more or less a down-scaled version that library.
Just as us, they use PulseAudio for playback. This fact confirms that PulseAu-
dio is a standard in the industry and justifies our choice.

Finally, we are happy with this back-end. It offers the features we expected
in the book of specifications with good stability.

7It killed one of our Manjaro virtual machines

40

Chapter 4

MP3 Encoding

4.1 Time-Frequency Filterbank

Applying filter to signals has the main advantage of getting rid of the useless
aspects of the signal and reduce the size of the signal.

The MP3 standard recommends a high-pass filter to improve the sound
quality while removing lower frequencies.

This is the first step of the first phase, where low frequencies are simply
being cut out from the signal by default.

4.2 Analysis Subband Filter

This filter is a polyphase filter. It turns a PCM signal (from a WAV file) with
fs as default sampling frequency into 32 equally spaced subsection by sampling
frequencies of fs/32.

This polyphase filter is later completed by the MDCT, those two create a
hybrid filterbank.

4.2.1 Implementation

We have to follow the following steps:

1. Divide the audio into 32 samples

2. Create a list X of 512 elements where the first 32 elements are the audio
samples then:

Xi = Xi−32, for i= 511 down to 32. (4.1)

3. Multiply the each coefficient by an constant array C to create an array Z

41

4. Create an array Y following this equation:

Yi =

7∑
j=0

Zi + 64j, for j = 0 down to 63. (4.2)

5. Create the 32 subband samples S by matrixing with:

Si =

63∑
k=0

Mi,k ∗ Yk, for i= 0 to 31. (4.3)

6. The final equation which will give us the coefficients of the final matrix
by the following formula:

Mi,k = cos

[
(2i+ 1)(k − 16)π

64

]
, for i= 0 to 31. (4.4)

The constant array C draws this function:

Figure 4.1: Coefficients from Ci

4.3 Psycho-acoustic model

The main developer for this part of the project is Jean Bou Raad with Kevin-
Brian N’Diaye assistance for mathematical notions.

42

4.3.1 Introduction

The MPEG standard encoding process is lossy. It means that the original audio,
in addition to being compressed, is also being modified to reduce its size. The
process discards also some data. To determine which data to keep and delete,
the standard uses a psycho-acoustic model.

The term psycho-acoustic itself is a part of science that studies the relation
between the perception of sound in the human ears and the sound being sent.
Here, in our encoding process, a psycho-acoustic model tries to imitate the per-
ception of the sound and select only the sound that the human can hear. For
instance, generally speaking, we cannot perceive sounds above 20 kHz.Hence,
the sounds above that range will be discarded by the model. But, there’s more
to it than that. The implementation of model 1 for the MPEG 3 - Layer 3 audio
encoding process requires vast algorithms that this part describes.

4.3.2 Definitions

This part of the project is not only about computer science. Hence, we decided
to provide some definitions for some keywords.

1. Sound Pressure Level (SPL): represents the relative loudness of a sound.
It can be negative or positive. Its unit is the decibel (dB).

2. Masking: Our ears cannot distinguish two sounds that are too close. The
sound with the higher sound pressure will mask the other. The model uses
them to discard some data.

3. Critical Bandwidth (critical band): the critical band is the band of audio
frequencies within which a second tone will interfere with the perception
of the first tone by auditory masking1. It is the first block to detect the
masking effect.

4. Maskers: represents the pressures required to hear a sound at a frequency
f. In our implementation, it is an array that scans ranges of frequencies.
Unit is again dB.

1https://www.wikiwand.com/en/Critical_band

43

https://www.wikiwand.com/en/Critical_band

4.3.3 Steps in implementation

This small subsection details the global process in which audio samples go
through to get a mask. It will be a quick overview. The following parts will
explain the notions in depth.

1. Using a Fast Fourier Transform (FFT) algorithm, we transform a time
signal into frequencies with relative sound pressure levels. The result is
called the SPL array, and the indices are called spectral lines.

2. Determination of the sound pressure level in each subband. This process
is not yet complete because it interacts with future parts of the project.

3. Finding tonal and non-tonal components in our spectral lines.

4. Discarding data that cannot be heard by the human ear. They are either
too weak or too close to another tonal component.

5. Calculation of the maskers using the relevant data. We compute two of
them: one for tonal components and one for noises.

6. Computation of the global masker.

7. Determination of the minimum masking threshold in each subband.

8. Computation of the subband masking ration (SMR).

4.3.4 FFT: getting the sound pressures

As explained above, the first step is about transforming our audio samples from
a unit of time into a range of frequencies. First, we must normalize our input:

x(n) =
s(n)

N ∗ 2b−1

Where s(n) is the input array, N the number of samples in our array, and b the
number of bits per sample.

Then, with s(n), we compute the FFT, which is as follows:

SPL(k) = PN + 10 log(10) |
N−1∑
n=0

x(n)h(n) exp (−i2πkn
N

)|2

Where PN is the power normalization term, for MP3, it is required to scale the
values with a maximum of 96 dB, h(n) is the Hann window2.

2Please refer to https://www.wikiwand.com/en/Hann_function

44

https://www.wikiwand.com/en/Hann_function

In the C language, it translates to this piece of code:

1 // memory a l l o c a t i o n here , Hann window i s computed a l s o above
2 long double max = −INFINITY ; //macro from standard
3 f o r (s i z e t i = 0 ; i < HALF; i++)
4 {
5 // FFT transform on NB SAMPLES po in t s => 1024 f o r MP3
6 // sum a l l ows to r e t r i e v e t o t a l va lue f a s t e r
7 long double complex sum = 0 ;
8 f o r (s i z e t j = 0 ; j < NB SAMPLES; j++)
9 {

10 long double complex va l = cexp l (− I ∗ ((2∗M PI∗ i ∗ j) /
NB SAMPLES)) ;

11 long double complex q = window [j]∗ samples [j]∗ va l ;
12 sum += q ;
13 }
14 // conver s i on to r e a l norm
15 long double norm = cabs l (sum) ;
16 long double sq = powl (norm , 2) ;
17 long double r e s ;
18 // nu l l logar i thm i s undef ined !
19 i f (sq != 0)
20 r e s = 10∗ l o g 1 0 l (sq) ;
21 e l s e
22 r e s = sq ;
23 vec to r [i] = r e s ;
24 i f (r e s > max)
25 max = re s ;
26 }
27 // norma l i za t i on to 96DB max
28 long double PN = 96.0−max ;
29 addToArrayl (vector , HALF, PN) ;

Figure 4.2: FFT transform code for MP3 encoding

As you can see, we determine the PN using the result of the left-hand side
term. The vector is 512 points long, which is half of the 1024 points used. In
reality, there is a symmetry between the part before the middle and after the
middle of the array.

These points represent the relative pressure with a maximum level of 96 dB.
Moreover, the points scan a range of frequencies, which are fs

N Hz. For in-
stance, if fs = 44100 Hz, then each point scans a range of approximately 43.066
Hz. Meaning that at SPL(112) gives the relative pressure of the sounds in the
range of frequencies of 4823.44 Hz. These points are also called spectral lines.

45

Using a Jupyter notebook and some python magic3, we get the following
graph:

Figure 4.3: Example of result using an FFT

This result is similar to what one could get with specialized software (Au-
dacity4 for instance).

4.3.5 SPL determination for subbands

This part is described in the part 3.2.2 of the pdf available at:
http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf

It was only partially implemented because It requires data from external parts
of the project not yet implemented.

3It’s shiny...
4https://manual.audacityteam.org/man/plot_spectrum.html

46

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf
https://manual.audacityteam.org/man/plot_spectrum.html

4.3.6 Tonal and non-tonal components

To determine the masker, we need to find the tonal and non-tonal components.
We determine them using the following method:

1. Determining local maxima, they satisfy this relation SPL(k) > SPL(k+1)
and SPL(k) > SPL(k − 1) with k ∈ [1;N/2]

2. Using the maxima, we check that they verify the following condition:
SPL(k)− SPL(k + j) ≥ 7 dB for all j in range:

(a) if 2 < k < 63 then for each value of j in {−2, 2}, the condition must
be satisfied.

(b) if 63 ≤ k < 127 then each of the previous j and the following one in
{−3, 3}, the condition must be satisfied.

(c) if 127 ≤ k < 255, then j must satisfy the previous conditions and for
these values: {−6, 6}

(d) if 255 ≤ k ≤ 500, finally, we add: {−12, 12}

3. If the index k satisfies all these conditions, we add it to the list of tonal
components.

For this part (and not only this one), we need an implementation of lists. We
decided to go for a static list implementation, which follows the following dec-
laration:

1 typede f s t r u c t s t a t i c l i s t
2 {
3 s i z e t ∗data ; // s t o r e s indexes
4 s i z e t s i z e ; // r e a l s i z e in memory
5 s i z e t nb e l ; // number o f e lements
6 } s t a t i c l i s t ;

Figure 4.4: Declaration of the static list type

We implemented the following operations:

1. Append including extensions if the array is full.

2. Pop at index i.

3. Contains to search an item in the list.

47

To find noise components in the samples, we use another method. This
method scans through critical bands. These follow an ISO norm and are pro-
vided in this pdf (table 3.8):

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf

Each critical band in the table represents a range of indexes in the table of
sound pressures. We sum the pressures of the frequencies not yet treated by the
previous function (tonal process).
As a friendly reminder, please remember that the decibel is not a linear scale.
To sum it, we must convert the values back to powers, sum them, and compute
the resulting sound pressure level5.
The next step for this algorithm is to compute the center of frequency matched
with the index of the noises. It is the result of a sum weighted by the critical
bands:

center =

∑cbi+1
n=cbi 10SPL(n)/10(z(cb(j))− i)

10power/10

Where power is the addition of each sound pressure, cbi and cbi + 1 are the
ranges of the critical bands in the array of volumes. We round them to get the
associated index. z is a function that provides the critical bandwidth associated
with frequency f .

Finally, we get two lists with the tonal and non-tonal sounds. Those lists contain
indices of the SPL array.

4.3.7 Decimation: remove useless sounds

As previously, our ears are not perfect. We cannot hear frequencies under a
threshold in decibel, which varies for each frequency. Also, if two tonal sounds
are too close, we only hear one.
We can compute the threshold of hearing thanks to this formula for each fre-
quency f :

T (f) = 3.64 (
f

1000
)−0.8 − 6.5 exp (−0.6(

f

1000
− 3.3)2) + 10−3(

f

1000
)4 (dB)

So for each tonal and non-tonal component, we check if the volume is above
that threshold. If it is not the case, we discard it.

For tonal components, we need to compute their relative distance in barks.
If z(t[i+ 1])− z(t[i]) < 0.5 (bark) then we remove the one with the lowest vol-
ume according to the array of sound pressures. For the sake of simplicity in the
formula, t[index] represents the frequency associated with the index requested.

5See: https://www.wikiwand.com/en/Decibel

48

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf
https://www.wikiwand.com/en/Decibel

4.3.8 Masking thresholds for non-tonal and tonal compo-
nents

We have now down-sampled the sound provided to a subset of tonal and non-
tonal components. However, in reality, we can afford to have more data than
this small subset. For a sampling rate at 44.1 kHz, we can have 130 ranges of
frequencies with their masking threshold6.
Rather than going through the numerous formulas, we will be giving a snippet
of code to illustrate the process:

1 // f o r the 130 c r i t i c a l bands do . . .
2 f o r (s i z e t i = 0 ; i < c r i t −>s i z e ; i++)
3 {
4 // i n i t i a l i z e s l i s t o f volumes
5 masks [i] = i n i t S t a t i c L i s t F () ;
6 // c r i t i c a l band a s s o c i a t ed to f requency at index i
7 long double z i = c r i t −>barks [i] ;
8 f o r (s i z e t j = 0 ; j < t−>tona l s−>nb e l ; j++)
9 {

10 // index o f tona l component in the l i s t
11 s i z e t k = t−>tona l s−>data [j] ;
12 // map g i v e s the nea r e s t c r i t i c a l band from the

f requency given by k
13 long double z j = c r i t −>barks [map [k]] ;
14 long double dz = zi−z j ;
15 i f (dz >= −3 && dz <= 8)
16 {
17 long double avtm = −1.525 − 0 .275 ∗ z j − 4 . 5 ;
18 long double v f = 0 ;
19 i f (dz >= −3 && dz < −1)
20 vf = 17 ∗ (dz+1) − (0 . 4 ∗ SPL [k] + 6) ;
21 e l s e i f (dz >= −1 && dz < 0)
22 vf = dz ∗ (0 . 4 ∗ SPL [k] + 6) ;
23 e l s e i f (dz >= 0 && dz < 1)
24 vf = −17∗dz ;
25 e l s e i f (dz >= 1 && dz <= 8)
26 vf = −(dz − 1) ∗ (17 − 0 .15 ∗ SPL [k]) − 17 ;
27 // append the sum to the l i s t
28 appendStat icL i s tF (masks [i] , SPL [k]+ vf+avtm) ;
29 }
30 }
31 }

Figure 4.5: Masking threshold computation for tonal components

The resulting array of lists contains the different masking thresholds for each
component.

6We cannot say it enough, please read http://www.mp3-tech.org/programmer/docs/

jacaba_main.pdf at 3.2.6

49

http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf
http://www.mp3-tech.org/programmer/docs/jacaba_main.pdf

4.3.9 Global masking threshold

The global masking threshold is the sum of all thresholds (from tonal and non-
tonal components) for each critical band. Again, the sum of decibels is not a
regular sum. We must merge the values and sum them all together using a
function. Our implementation is as follows:

1 // c r e a t e a l i s t o f long f l o a t s
2 s t a t i c l i s t f ∗g masks = i n i t S t a t i c L i s t F () ;
3 // s i z e = 130 , the number o f c r i t i c a l bands
4 f o r (s i z e t i = 0 ; i < s i z e ; i++)
5 {
6 // merge a l l va lue s i n to one array
7 // i t s s i z e i s 1 (thr) + nb e l in no i s e and tona l
8 long double ∗ va lue s = c a l l o c (1+ tona l [i]−>nb e l+no i s e s [i]−>

nb el , s i z e o f (long double)) ;
9 va lue s [0] = table−>th r e sho ld s [i] ;

10 // copy at o f f s e t 1
11 memcpy(va lue s+1, tona l [i]−>data , tona l [i]−>nb e l ∗ s i z e o f (

long double)) ;
12 // copy at o f f s e t 1+nb va lue s in tona l
13 memcpy(va lue s+1+tona l [i]−>nb el , n o i s e s [i]−>data , n o i s e s [i

]−>nb e l ∗ s i z e o f (long double)) ;
14

15 // computes the dB sum
16 long double f i n a l = add db (values , 1+tona l [i]−>nb e l+no i s e s

[i]−>nb e l) ;
17 // appends i t to the l i s t o f g l oba l masks
18 appendStat icL i s tF (g masks , f i n a l) ;
19 f r e e (va lue s) ;
20 }
21 r e turn g masks ;

Figure 4.6: Global masking threshold computation

50

4.3.10 Minimum masksing threshold

Now, we must go back to our subbands. They are only 32 for this encoding
process. To reduce the previous 130 samples, we get the minimum between
each subband. In the C language, we get:

1 long double ∗getMinimumMaskThr (s t a t i c l i s t f ∗ g loba l , s i z e t ∗map)
2 {
3 long double ∗mask = c a l l o c (NB SUBBANDS, s i z e o f (long double)) ;
4 f o r (s i z e t i = 0 ; i < NB SUBBANDS; i++)
5 {
6 // ge t s the minimum between index f i r s t and l a s t o f g l oba l

masks thr
7 s i z e t f i r s t = map [i ∗SUB SIZE] ;
8 s i z e t l a s t = map [(i +1)∗SUB SIZE −1];
9 long double min = INFINITY ;

10 f o r (s i z e t i = f i r s t ; i <= l a s t && i < g loba l−>nb e l ; i++)
11 {
12 i f (g loba l−>data [i] < min)
13 min = globa l−>data [i] ;
14 }
15 // d e f au l t va lue i s 0
16 mask [i] = min == INFINITY ? 0 : min ;
17 }
18 r e turn mask ;
19 }

Figure 4.7: Minimum mask value for each subband

51

4.4 Conclusion

The psycho-acoustic model for the encoding is already quite vast. It is an old
model but still illustrates the complexity of the science behind it.

According to Github, this part of the project represents around 1200 lines of
code written by at most two person. It does not include the multiple tools
and hours of research needed to understand the concepts behind the code. For
instance, we coded the equivalent code in python to test our code and create a
test suite.

Moreover, the MP3 standard was a proprietary codec7 for a long time. It means
that one cannot find easily on the Internet resources and standards. That led
to lengthy research in the depth of Google to find decent documentation to do
our implementation.

These difficulties, added to the level of complexity of this codec led to the
abondonment of this part. We lacked of experience and started the work too
late. This part of our project could be an entire project on a semester due to
its complexity.

7https://www.wikiwand.com/fr/MP3 ISO standard: 11172–3, 13818–3

52

https://www.wikiwand.com/fr/MP3

Chapter 5

Creating a new file Format

This part was done by Yabsira Alemayehu MULAT & Jean Bou Raad.

5.1 Huffman Coding

5.1.1 Introduction

Huffman coding is an efficient method of compressing data without losing in-
formation (data). It is an algorithm developed by David A. Huffman 1while he
was a Sc.D. student at MIT, and published in the 1952 paper ”A Method for
the Construction of Minimum-Redundancy Codes”.

It provides an efficient, unambiguous code by analyzing the frequencies that
certain symbols appear in a message. Symbols that appear more often will be
encoded as a shorter-bit string while symbols that aren’t used as much will be
encoded as longer strings. Therefore, this algorithm generates a code (Huffman
code) to the message that will be encoded based on the frequencies of each sym-
bols or characters in the message.

5.1.2 Huffman Compression Algorithm

The Huffman Compression algorithm has four main processes. These processes
are:

1. Building a frequency list for each symbol or characters in the file.

2. Building the Huffman Tree which contains the codes for every symbol..

3. Encoding the data from the Huffman tree.

4. Compressing the file.
1https://www.wikiwand.com/en/Huffman_coding#overview

53

https://www.wikiwand.com/en/Huffman_coding#overview

Building a frequency list

The frequency list is a list that contains the frequencies of each and every char-
acter in the file. The algorithm is straight forward2. First we go through the
data which is bunch of strings. Next, we count the occurrence of each character
and save it as their frequency values. Finally, we build a list of every symbols
or characters with their respective frequencies and return the list.

The implementation is as follows:

1 s t r u c t g l i s t ∗ b u i l d f r e q u e n c y l i s t (char ∗ s t r , s i z e t l en)
2 {
3 g l i s t ∗ r e s u l t = i n i t g l i s t () ;
4 // I n i t i a l i z e a l i s t o f z e r o s
5 s i z e t dataL i s t [HUFFMAX] = {0} ;
6 f o r (s i z e t i = 0 ; i < l en ; i++)
7 {
8 // Increment the f r e qu en c i e s o f each chars
9 dataL i s t [(unsigned char) s t r [i]] += 1 ;

10 }
11 f o r (s i z e t j = 0 ; j < HUFFMAX; j++)
12 {
13 i f (da taL i s t [j] != 0)
14 {
15 // Tuple s t r u c tu r e
16 f r e q i n f o f = {
17 . item = j ,
18 . f r equency = dataL i s t [j] ,
19 } ;
20 //append a l l the tup l e s o f va lue s and f r e qu en c i e s o f

each charac t e r
21 append g l i s t (r e su l t , f) ;
22 }
23 }
24 r e turn r e s u l t ;
25 }

Figure 5.1: Building frequency list

To give more clarifications on the code above, the HUFF MAX is a Macro
for the range of ascii values we expect from the data of the file. The struct
glist is a structure that we built for lists which contain attributes like data,
number of elements and size of the list.

2https://www.wikiwand.com/en/Huffman_coding#Terminology

54

https://www.wikiwand.com/en/Huffman_coding#Terminology

Frequency list

Building the Huffman Tree

The second step in the Huffman coding algorithm is building the Huffman tree.
The Huffman tree is a binary tree that is build from the frequency list. Basi-
cally, by taking the frequency list as an input, we build a tree by giving priorities
to the characters having a less frequency. We create nodes for the symbols or
characters with less frequency and build the tree until all the characters are part
of the tree. The function takes the frequency list as an input and returns binary
tree.

A Sample of the Huffman tree

The implementation is as follows:

55

1 binTree ∗buildHuffmanTree (g l i s t ∗ f r e q l i s t)
2 {
3 t l i s t ∗ t = i n i t t l i s t () ;
4 f o r (s i z e t i = 0 ; i < f r e q l i s t −>nb e l ; i++)
5 {
6 binTree ∗ t r e e = createTree (f r e q l i s t −>data [i] , NULL, NULL) ;
7 app end t l i s t (t , t r e e) ;
8 }
9 d e c r e a s i n g s o r t (t) ;

10

11 whi le (t−>nb e l > 1)
12 {
13 binTree ∗ f r eq1 = tree pop (t) ;
14 binTree ∗ f r eq2 = tree pop (t) ;
15 f r e q i n f o f = {
16 . item = 0 ,
17 . f r equency = freq1−>key . f requency + freq2−>key .

frequency ,
18 } ;
19 binTree ∗new = createTree (f , f req2 , f r eq1) ;
20 // j u s t in case to check f o r r e a l root cause we have nu l l

cha rac t e r i s s u e
21 new−>f l a g = 1 ; // 1 i n d i c a t e s a non termina l node
22 app end t l i s t (t , new) ;
23 d e c r e a s i n g s o r t (t) ;
24 }
25 binTree ∗ r e s u l t = t−>data [0] ;
26 i f (! r e s u l t−> l e f t && ! r e su l t−>r i g h t)
27 r e su l t−>f l a g = 0 ;
28 f r e e (t−>data) ;
29 f r e e (t) ;
30 r e turn r e s u l t ;
31 }

Figure 5.2: Building Huffman Tree

In the code above, there are different tree operations like createTree, tree pop
and also the binTree structure. The createTree is a function that creates a
binary tree using the root, left, and right nodes. The tree pop is a function
that allows to pop an element from a binary tree with an index. And finally
the binTree is a structure that contains the essential elements of a binary tree
such as the key, left, and right values. There is also a sorting function which is
the decreasing sort() that sorts the keys of a tree in descending order3.

3https://www.wikiwand.com/en/Huffman_coding#Problem_definition

56

https://www.wikiwand.com/en/Huffman_coding#Problem_definition

Encoding the tree

The third step for compressing the file is to encode the data of the tree. Be-
fore compressing a file, the data of a file is composed of characters or symbols
that consists of 8 bits of memory according to their specific ASCII values rep-
resented in binary numbers. Therefore, the reason we built the Huffman tree
is to generate a Huffman code from the tree. These codes have less number of
bits compared to their original size in the original file.

Encoding Tree

In the picture above you can see that there are Os and 1s in every edge between
all the nodes. All the edges in the right part of the sub-trees have 0s and all
the left sub-trees have 1s. Therefore, to generate a code for a single character,
we traverse through the tree and concatenate the 0s and 1s until we reach the
character.

The implementation is as follows:

57

1 char ∗ encodeDataHuff (binTree ∗ t ree , char ∗ s t r , s i z e t l en)
2 {
3 // array o f s t r i n g s , one c e l l per a s c i i code
4 char ∗ charcode [2 5 6] = {0} ;
5 GString ∗ r e s u l t = g s t r i ng new (””) ;
6 char ∗ r e s ;
7 f o r (s i z e t i = 0 ; i < l en ; i++)
8 {
9 // i f we haven ’ t found yet the a s s o c i a t ed code

10 i f (! charcode [(unsigned char) s t r [i]])
11 {
12 // s i z e t l en = 0 ;
13 s t r i n g ∗ s = mal loc (s i z e o f (s t r i n g)) ;
14 s−>data = mal loc (129∗ s i z e o f (char)) ;
15 s−>a l l o c a t e d = 129 ;
16 s−>l en = 0 ;
17 occu r enc e (t ree , s t r [i] , s , 0) ;
18 // keeps i t in the array now
19 charcode [(unsigned char) s t r [i]] = s−>data ;
20 // f r e e (s−>data) ;
21 // we f r e e the s t r i n g s t r u c tu r e but not the data

because we need i t
22 f r e e (s) ;
23 }
24 g s t r ing append (r e su l t , charcode [(unsigned char) s t r [i]]) ;
25 }
26 f o r (s i z e t i = 0 ; i < 256 ; i++)
27 {
28 i f (charcode [i])
29 {
30 f r e e (charcode [i]) ;
31 }
32 }
33 r e s = r e su l t−>s t r ;
34 g s t r i n g f r e e (r e su l t , FALSE) ;
35 r e turn r e s ;
36 }

Figure 5.3: Encode data

58

1 void r e c (binTree ∗ t ree , GString ∗ r e s u l t)
2 {
3 i f (! t r e e)
4 r e turn ;
5 i f (! t ree−>f l a g)
6 {
7 g s t r ing append (r e su l t , ”1”) ;
8 char ∗ s = a s c i i t o b i n a r y (t ree−>key . item) ;
9 g s t r ing append (r e su l t , s) ;

10 f r e e (s) ;
11 }
12 e l s e
13 {
14 g s t r ing append (r e su l t , ”0”) ;
15 r e c (t ree−>l e f t , r e s u l t) ;
16 r e c (t ree−>r i ght , r e s u l t) ;
17 }
18 }
19

20 char ∗ encodeTree (binTree ∗ t r e e)
21 {
22 GString ∗ r e s u l t = g s t r i ng new (””) ;
23 r e c (t ree , r e s u l t) ;
24 char ∗ r e s = r e su l t−>s t r ;
25 g s t r i n g f r e e (r e su l t , FALSE) ;
26 r e turn r e s ;
27 }

Figure 5.4: Encode tree

59

Compressing the file

Before going directly to the algorithm of compression, there will be an explana-
tion about the data type of the file which will be compressed in our project. In
wav format audio files, the data is stored in the wav file is uncompressed raw
file composed of the header and the data. In order to compress this file first we
have to convert it to binary numbers. The result that we get from the encode
data is a binary number. Therefore, finally we convert this binary numbers
into bitstreams to get 8 bit binary values. We created different functions to
perform different operations on this bitstreams4.

The structure of the bitstream contains the following:

1 typede f s t r u c t bitStream
2 {
3 char ∗data ; // stream of data
4 s i z e t o f f s e t w ; // o f f s e t f o r wr i t i ng purposes per b i t
5 s i z e t c e l l w ; // o f f s e t in the c e l l % 8
6 s i z e t l e n r ; // maximum read ing index
7 s i z e t o f f s e t r ; // maximum o f f s e t in c e l l % 8 f o r l e n r
8 s i z e t a l l o c a t e d l e n ;
9 } bitStream ;

Figure 5.5: Structure of the bitStream

Some of these operations are:

4https://www.wikiwand.com/en/Huffman_coding#Compression

60

https://www.wikiwand.com/en/Huffman_coding#Compression

1 // appends a b i t to a b i t s t ream with r e a l l o c i f needed
2 void appendBitStream (bitStream ∗ s , char e l)
3 {
4 // r e a l l o c a t i o n i f needed
5 i f (s−>a l l o c a t e d l e n == s−>o f f s e t w)
6 {
7 s−>data = r e a l l o c (s−>data , s i z e o f (char) ∗ s−>a l l o c a t e d l e n ∗2)

;
8 s−>a l l o c a t e d l e n ∗= 2 ;
9 }

10 // i f i t i s 0 we s h i f t one time to the l e f t (LMSB)
11 i f (e l == ’ 0 ’)
12 {
13 s−>data [s−>o f f s e t w] = s−>data [s−>o f f s e t w] << 1 ;
14 // c e l l o f f s e t update modulo 8 b i t s
15 s−>c e l l w = (s−>c e l l w+1) % 8 ;
16 i f (! s−>c e l l w)
17 s−>o f f s e t w++;
18 }
19 // i f i t i s 1 we s h i f t one time to the l e f t (LMSB) & add one
20 e l s e i f (e l == ’ 1 ’)
21 {
22 s−>data [s−>o f f s e t w] = s−>data [s−>o f f s e t w] << 1 ;
23 s−>data [s−>o f f s e t w] |= 1 ;
24 s−>c e l l w = (s−>c e l l w+1) % 8 ;
25 i f (! s−>c e l l w)
26 s−>o f f s e t w++;
27 }
28 e l s e
29 {
30 e r rx (EXIT FAILURE, ”unknown char ”) ;
31 }
32 }

Figure 5.6: Initialization and Append operation on bitstreams

1 // encodes a f u l l s t r i n g o f data , a l l chars are ’0 ’ or ’1 ’
2 // except f o r nu l l t e rminat ion
3 bitStream ∗encodeData (char ∗ s)
4 {
5 bitStream ∗b = i n i t i a l i z eB i t S t r e am () ;
6 f o r (s i z e t i = 0 ; s [i] ; i++)
7 {
8 // appends a 0 or a 1 to a bitStream
9 appendBitStream (b , s [i]) ;

10 }
11 // updates padding accord ing to the r e s u l t
12 b−>o f f s e t r = ! b−>c e l l w ? 0 : 8 − b−>c e l l w ;
13 r e turn b ;
14 }

Figure 5.7: Encode data for bitstream

61

1 // slow decoding proce s s o (n)
2 char ∗decodeBitStream (bitStream ∗ stream)
3 {
4 GString ∗ s = g s t r i ng new (””) ;
5 f o r (s i z e t i = 0 ; i < stream−>o f f s e t w ; i++)
6 {
7 // convert char to b i t r ep r e s en t a t i on
8 // can reduce a l l o c a t i o n by us ing an unique bu f f e r
9 char ∗base2 = toBi tRepre sentat ion (stream−>data [i]) ;

10 g s t r ing append (s , base2) ;
11 f r e e (base2) ;
12 }
13 char ∗ l a s t = toBi tRepre sentat i on (stream−>data [stream−>o f f s e t w

]) ;
14 g s t r ing append (s , l a s t+stream−>o f f s e t r) ;
15 f r e e (l a s t) ;
16 char ∗ r e s u l t = s−>s t r ;
17 g s t r i n g f r e e (s , FALSE) ;
18 r e turn r e s u l t ;
19 }

Figure 5.8: Decode data and bit representation on bitstream

62

Now, having the data converted to bitstream, we can compress the file. We
categorized the data into three parts. The categories are :

1. TREE

2. HDAT

3. DUPL

These categories are IDs for specific types of data. The TREE contains the
Huffman tree, the HDAT contains the Huffman data and finally the DUPL
contains duplicated characters used in the data. We can use those chunks for
other purposes as well if needed.

Using these IDs we compressed the files by encoding the data in less number
of bits from the result we got from encoding the data in the bitstream. Basically,
we encoded all the data with respect to their IDs and created an output data
with less size.

The method looks as follows:

63

1 void compressToFile (char ∗data , s i z e t len , char ∗output)
2 {
3 // c l a s s i c Huffman compress ion proce s s
4 g l i s t ∗ f r e q = bu i l d f r e q u e n c y l i s t (data , l en) ;
5 binTree ∗ t = buildHuffmanTree (f r e q) ;
6 f r e e g l i s t (f r e q) ;
7 // data under the form o f ’0 ’ and ’1 ’ (bytes)
8 char ∗ encoded t ree = encodeTree (t) ;
9 char ∗ encoded data = encodeDataHuff (t , data , l en) ;

10 // To bi t s t ream : from 8 bytes to 1 byte
11 bitStream ∗b = encodeData (encoded t ree) ;
12 // s t r u c tu r e f o r the output
13 output h ∗ t r e e = createOutput (b , ”TREE”) ;
14

15 i n t fd = open (output , O CREAT | OWRONLY | OTRUNC, 0666) ;
16 // wr i t e s the s t r u c tu r e and the data to the f i l e
17 wr i t eS t ruc tu r e (fd , t r e e) ;
18 f r eeBi tStream (b) ;
19 f r e e (t r e e) ;
20 f r e e (encoded t ree) ;
21

22 bitStream ∗d = encodeData (encoded data) ;
23 t r e e = createOutput (d , ”HDAT”) ;
24

25 wr i t eS t ruc tu r e (fd , t r e e) ;
26 c l o s e (fd) ;
27 // Free ing zone
28 f r eeBi tStream (d) ;
29 f r e e (t r e e) ;
30 f r eeBinTree (t) ;
31 f r e e (encoded data) ;
32 }

Figure 5.9: Compression

5.1.3 Huffman Decompression Algorithm

The decompression process of a file is basically the translation of the encoded
data from the Huffman tree to single characters and put them back to their
previous ASCII values with 8 bits structure. To perform this algorithm, we
created functions to decode the Huffman data and decode the Huffman
Tree. By using this functions we were able to decompress the file to its original
size.

The functions are implemented as follows:

64

1 // Slow i n t e g r a l decompress ion proce s s o (n)
2 char ∗decodeDataHuff (binTree ∗ t ree , char ∗ s t r , s i z e t len , s i z e t ∗

t o t a l)
3 {
4 s t r i n g s =
5 {
6 . a l l o c a t e d = 512 ,
7 . data = c a l l o c (512 , s i z e o f (char)) ,
8 . l en = 0 ,
9 } ;

10 binTree ∗ t = t r e e ;
11 f o r (s i z e t i = 0 ; i < l en ; i++)
12 {
13 // i f i t i s a l e a f . . .
14 i f (! t−>f l a g)
15 {
16 // check i f the s t r i n g i s f u l l
17 i f (s . l en == s . a l l o c a t e d)
18 {
19 // r e a l l o c i f needed
20 s . data = r e a l l o c (s . data , s . l en ∗ 2 ∗ s i z e o f (char)) ;
21 s . a l l o c a t e d ∗= 2 ;
22 }
23 // append the l e a f ’ s item
24 s . data [s . l en] = t−>key . item ;
25 s . l en++;
26 // r e s e t the t r a v e r s a l
27 t = t r e e ;
28 }
29 i f (s t r [i] == ’ 0 ’)
30 t = t−> l e f t ;
31 i f (s t r [i] == ’ 1 ’)
32 t = t−>r i g h t ;
33 }
34 // l a s t element
35 s . data [s . l en] = t−>key . item ;
36 s . l en++;
37 ∗ t o t a l = s . l en ;
38 r e turn s . data ;
39 }

Figure 5.10: Decode Huffman data

65

1 s t r u c t t up l e b i decodeTree (char ∗data , s i z e t i)
2 {
3 // maybe not sa f e , check f o r s t r l e n as param mb i f e r r o r s
4 i f (! data [i])
5 {
6 s t r u c t t up l e b i r e s =
7 {
8 . t = NULL,
9 . i = i ,

10 } ;
11 r e turn r e s ;
12 }
13 i f (data [i] == ’ 1 ’)
14 {
15 char key = fromBinToByte (data+i +1) ;
16 f r e q i n f o f =
17 {
18 . f r equency = 0 ,
19 . item = key ,
20 } ;
21 binTree ∗ t = createTree (f , NULL, NULL) ;
22 s t r u c t t up l e b i r e s = {
23 . t = t ,
24 . i = i +8,
25 } ;
26 r e turn r e s ;
27 }
28 f r e q i n f o f = {
29 . f r equency = 0 ,
30 . item = 0 ,
31 } ;
32 binTree ∗ t = createTree (f , NULL, NULL) ;
33 // check that i t i s c o r r e c t
34 t−>f l a g = 1 ;
35 s t r u c t t up l e b i r e s l = decodeTree (data , i +1) ;
36 s t r u c t t up l e b i r e s r = decodeTree (data , r e s l . i +1) ;
37 i = r e s r . i ;
38 t−> l e f t = r e s l . t ;
39 t−>r i g h t = r e s r . t ;
40 s t r u c t t up l e b i f i n a l =
41 {
42 . t = t ,
43 . i = i ,
44 } ;
45 r e turn f i n a l ;
46 }

Figure 5.11: Decode Huffman tree

5

5https://www.wikiwand.com/en/Huffman_coding#Decompression

66

https://www.wikiwand.com/en/Huffman_coding#Decompression

5.2 Adaptation of WAVE file format

To compensate the removal of the MP3 encoding process in our book of speci-
fications, we decided to create a new kind of compression.
This process is by itself a challenge because of the limited time we had.
We implemented compression & decompression algorithms for a new compressed
format which we will explain here.

5.2.1 General encoding process

This part showcases the steps to encode PCM wave files into Huffman Com-
pressed wave files.

Changes from classic WAVE file format

The WAVE file format is a modular file format. It offers many functionalities &
can be adapted for new purposes. We can add new chunks and add new norms
to existing ones. However, these add-on are supported only by our project be-
cause they do not fit into the norms.

The changes are:

1. Change to compression codes: we encode using a special encoding code:
42 which indicates H3rtz compression file. It differentiates the new files
from the classic PCM ones.

2. Modified data chunk: the data chunk is cut into smaller parts because the
data is Huffman compressed. Hence, we need the compression tree and
the actual compressed data. The compression is lossless.

Remember: this specific compression can only be read by our project

Implementation

We can compress a PCM signal using the Huffman compression functions. The
process can look trivial, however, it is not because we need to handle IO cor-
rectly. We must:

1. Write the header completely in a new file using the tools created by Kevin-
Brian.

2. Compress the data & write it in the new file.

However, the first steps depends on the second one. But, the order we provided
is the writing order we must follow.
To get around that inter-dependency, we output the compressed data to another
file, which acts as a buffer, and then update the header. Finally, we can write
correctly the new file.

67

Efficiency

Nowadays, with Free Lossless Audio Codec being a standard in the industry,
lossless compression got much more efficient than what it was before. It can
reach up to 50% file size reduction.
This codec uses multiple compression algorithms to reach that level of efficiency.
Hence, using only one leaves only little optimization.

With Huffman compression, we can only reach 1% to 5% size reduction. In-
deed, raw signals are not redundant most of the time. It decreases the efficiency
of Huffman’s compression algorithm. It is based on the fact that some values
will appear more than others which is not usually the case sadly.

However, the algorithm fulfills its main purpose: showcase our understanding
of the WAVE file format & general encoding conventions.

Finally, the compression is fast. For 80 millions bytes, the compression is done
in 6 seconds on a single thread. Of course, performance varies from one setup
to another so please take those numbers with precautions.

5.2.2 Decoding

The decoding process required no adaptation of our header parser. Indeed, the
only conventions we changed is inside the DATA chunk. It does not affect the
parser.

Algorithms: slow like a turtle

Decompression at least a few seconds to complete using the algorithms imple-
mented. This time is acceptable when decompressing the entire file to go back
to original PCM. However, it is not when using it for playback: the loading
takes too much time and freezes the player completely. We needed to make it
faster. We tried first to decode the data by chunks of 512 or more but it ended
up being too complicated for implementation.

The solution adopted bypasses many steps of the original algorithm to reduce
its complexity.

What we did for decompression is transforming the stream of bits into a string
of ’0’ and ’1’. Doing this step before running the algorithm could be an option.
However, its complexity is O(n)6 and takes 8 times more memory than the bit-
stream representation. To bypass this conversion, we implemented bit by bit
reading directly on the bitStream. Hence, when a bit needs to be accessed and

6n is the string’s length

68

converted into a ’0’ or ’1’, it can be done in O(1) without any new memory usage.

From this step, we added character by character decoding which avoids the
usual O(n) complexity to retrieve the whole data. Retrieving a single character
is done using a traversal guided by the data which can take at most O(H) (H
is the Huffman’s tree height) in worst case scenario. The decoding for a single
character looks like this:

1 // @param len : l ength o f the encoded data
2 // @param t o t a l : s i z e t po in t e r to the t o t a l s i z e o f the data
3 char decodeDataHuf fS ingle (binTree ∗ t ree , bitStream ∗b , s i z e t ∗ r ,
4 s i z e t ∗o , u i n t 8 t ∗ po s s i b l e)
5 {
6 binTree ∗ t = t r e e ;
7 f o r (s i z e t i = 0 ; ∗ r < b−>o f f s e t w ; i++)
8 {
9 // i f i t i s a l e a f . . .

10 i f (! t−>f l a g)
11 {
12 ∗ po s s i b l e = 1 ;
13 break ;
14 }
15 // r e t r i e v e s a s i n g l e b i t from the BitStream
16 char d = decodeIndex (b , r , o) ;
17 i f (d == ’ 0 ’)
18 t = t−> l e f t ;
19 i f (d == ’ 1 ’)
20 t = t−>r i g h t ;
21 // updates f o r read ing indexes , increments by one
22 ∗o = (∗ o + 1) % 8 ;
23 !∗ o ? (∗ r)++ : ∗ r ;
24 }
25 i f (∗ r == b−>o f f s e t w && t−>f l a g)
26 ∗ po s s i b l e = 0 ;
27 r e turn t−>key . item ;
28 }

Figure 5.12: Decoding function

5.2.3 Linking to PulseAudio - Back-end

Adapting PulseAudio to instantaneous decoding is not an easy task. It requires
heavy modifications to the backend to ensure good compatibility with the rest
of the code.
To make synchronous decompression work, we must:

1. Prepare the data: first decode the entire Huffman tree and put into the
BitStream structures the compressed data

2. Decompress the data when needed: this task requires the tracking of in-
dices to read the right data at the right moment.

69

The first step can be done using very simple functions. Indeed, they are com-
pletely independant from the rest of the backend.

1 // loads a tup l e with the Huffman t r e e + the data under the
s t r u c tu r e BitStream

2 tup l e decodeHuffmanPart (wav ∗w)
3 {
4 // Tuple f o r the r e s u l t
5 tup l e t = {0} ;
6 i f (!w | | w−>fmt−>AudioFormat != h3rtz)
7 r e turn t ;
8 s i z e t i = 0 ;
9 // r e s t o r e s the o r i g i n a l s i z e in the header

10 s i z e t o r i g i n a l l e n g t h = loadOnlyDUPL ((char ∗)w−>data−>chunk , &
i) ;

11 // Decode the Huffman t r e e
12 binTree ∗ t r e e = decompressTree ((char ∗)w−>data−>chunk , &i) ;
13 // Puts the compressed data in a bitStream s t ru c tu r e
14 bitStream ∗b = loadOnlyData ((char ∗)w−>data−>chunk , &i) ;
15 w−>data−>data bytes = o r i g i n a l l e n g t h ;
16 t . a = t r e e ;
17 t . b = b ;
18 r e turn t ;
19 }

Figure 5.13: General process to prepare decompression

The data given by this function is then stored in a structure:

1 typede f s t r u c t hu f f decode
2 {
3 binTree ∗ t r e e ;
4 bitStream ∗b ;
5 // indexes f o r read ing purposes
6 s i z e t r ;
7 s i z e t o ;
8 } hu f f decode ;

Figure 5.14: Huffman decoding structure

The second steps uses the structure to read and feed PulseAudio’s buffer in
a similar way to the code in part 2.4.5.
We use more functions to feed the buffer, the main part being as follows:

70

1 i f (f l a g) // f l a g s the compressed format
2 {
3 u i n t 8 t p o s s i b l e = 0 ;
4 // loop which wr i t e s at most b y t e s t o f i l l bytes
5 f o r (i = 0 ; i < b y t e s t o f i l l && i + wav−>timing−>

o f f s e t < f i l e l e n g t h ; i += 1)
6 {
7 po s s i b l e = 0 ;
8 // Decompression o f data us ing r , o as index
9 bu f f e r [i] = (u i n t 8 t) decodeDataHuf fS ingle (dec−>t ree

, dec−>b,&(dec−>r) , &(dec−>o) , &po s s i b l e) ;
10 // p o s s i b l e i n d i c a t e s end o f data
11 i f (! p o s s i b l e)
12 break ;
13 }
14 }

Figure 5.15: Snippet of code from the writing callback function

This code has been optimized to avoid stuttering during playback. Previous
versions of the decompression were decoding the needed data and then copying
it to a buffer.
The following shows the worst case complexity of each implementation in differ-
ent context. n is the data length, t is the tree’s code length, H is the Huffman’s
tree height, S is the number of samples requested, it is generally a number in
the ranges of 10000 to 50000. A quick reminder that t << n so O(t) << O(n)
which means that decoding a tree is quicker than decoding the whole data.

Context Original Optimization 1 Optimization 2
Loading O(n+ t) (Freezes GUI) O(t) (Fast) O(t) (Fast)
Playback O(S) (Fast) O(S(H + 1)) (Stutters) O(SH) (Fast)

The integration of the new file format was for most of the work about opti-
mization. It allowed us to see the difference in real life that can make bad code
with bad complexity and code with little complexity. The playback is currently
smooth and uses little memory in excess compared to the classic PCM signal
and uses around 1% of CPU during decompression (which is also playback). It
is within industry’s standard and proves that our algorithms are very efficient.

5.2.4 Linking with GUI

We created wrapping functions to connect both parts of the project. They take-
in paths (input & output). The GUI, using file choosers, is able to retrieve both
paths and give them to those functions. Using the WAVE headers, we can de-
termine if the program must decompress or compress the file (with compression
codes).

71

Chapter 6

GUI

6.1 Introduction

In the previous defenses, some basic features of the user interface such as the
play-pause buttons, and also some advanced features such as the playlist had
been implemented. The interface presented during the second defense looks sim-
ilarly to the final product that H3rtz.stdio created this final defense, we were
able to integrate important features such as audio converter and encoder and
created more dialog to warn and guide the user of the interface if it is not used
properly.

In the following part, all the important features are explained and showed in a
chronological order, which means that the changes will represent the evolution
of the interface during the project. It also means that it is completely normal
to see different versions of the interface, and reading it in order will make more
sense.

Finally, there will be a conclusion part to give a summary about what is done
during this whole project.
1

1https://developer.gnome.org/gtk3/stable/

72

https://developer.gnome.org/gtk3/stable/

6.2 Glade

Glade is a RAD tool to enable quick & easy development of user interfaces for
the GTK toolkit and the GNOME desktop environment.
The user interfaces designed in Glade are saved as XML, and by using the
GtkBuilder GTK object these can be loaded by applications dynamically as
needed.
For our project, we used this tool to design the following Interface. Glade
has many features that helps designing different dynamic interfaces. Since our
project is an audio player, we used most of the features like volume button
(slider), play button, pause button, progress bar(slider), signals to connect the
GTK to Glade object ...etc. The details of this interface will be given below.

73

For more information about Glade and it’s documentations, click here:

https://glade.gnome.org/

6.3 GTK

GTK is a free and open-source cross-platform widget toolkit for creating graph-
ical user interfaces. It will be used with Glade to create the GUI, specially to
link the functions to the components of the interface.

6.4 The first defense

Features listed bellow in this section are the features implemented before the
first defense.

6.4.1 File chooser

The file chooser component of the Interface design allows users to pick any au-
dio file that they want to play. To make this work, GTK provides a function
called gtk file chooser get filename(GtkWidget *widget) that allows to
get files from a directory using the widget used in the interface design. To be
more precise, the code is as follows:

1 void on choose wav (GtkWidget ∗widget , gpo in t e r userdata)
2 {
3 s t a t i c u i n t 8 t i n i t = 0 ;
4 g tk p l aye r ∗ p laye r = userdata ;
5 i f (p layer−>f i l ename)
6 f r e e (player−>f i l ename) ;
7 player−>f i l ename = g t k f i l e c h o o s e r g e t f i l e n am e (

GTK FILE CHOOSER(widget)) ;
8 i f (! p layer−>f i l ename)
9 r e turn ;

10 i n t code = terminateStream (player−>p laye r) ;
11 i f (code >= 0 && player−>ui . ID)
12 g source remove (player−>ui . ID) ;
13

14 pa r s eF i l e (p layer−>player , p layer−>f i l ename) ;

74

https://glade.gnome.org/

15 changeTi t l e (p laye r) ;
16 i f (prepareStream (player−>p laye r) == −1)
17 on qu i t (NULL, p laye r) ;
18 i f (! i n i t)
19 {
20 i n i t = 1 ;
21 setDefaultVolume (p laye r) ;
22 }
23 player−>player−>u t i l i t y −>cur rent = 0 ;
24 on play (p laye r) ;
25 }

6.4.2 Play and Pause button

The pause and play button is a toggle button. Indeed, when the button is
clicked, the icon changes. For that some icons have been designed, shaded
and background removed to make the toggle as smooth as possible. And of
course, this play and pause button is related to the playing music, the progress
bar. For convenience and performance, our team used the built-in function
g timeout add() instead of multi-threading.

1 void on play (g tk p l aye r ∗g)
2 {
3 i f (g−>player−>pa s t a t e != PAUSED && g−>player−>pa s t a t e !=

READY)
4 r e turn ;
5 i f (! g−>player−>pulseAudio−>stream)
6 r e turn ;
7 GtkWidget ∗ image = gtk image new f r om f i l e (” . /GUI/ c a l l b a ck s /

i c on s /pause . png”) ;
8 gtk but ton se t image (GTKBUTTON(g−>ui . p lay pause) , image) ;
9 play (g−>p laye r) ;

10 g−>ui . ID = g timeout add (100 , s l i d e r , g) ;
11 r e turn ;
12 }

1

2 void on pause (g tk p l aye r ∗g)
3 {
4 i f (g−>player−>pa s t a t e != PLAYING)
5 r e turn ;
6 GtkWidget ∗ image = gtk image new f r om f i l e (” . /GUI/ c a l l b a ck s /

i c on s / play . png”) ;
7 gtk but ton se t image (GTKBUTTON(g−>ui . p lay pause) , image) ;
8 Pause (g−>p laye r) ;
9 i f (g−>ui . ID)

10 g source remove (g−>ui . ID) ;
11 g−>ui . ID = 0 ;
12 r e turn ;
13 }

75

6.4.3 Progress Bar

As one guess from the name, the progress bar helps us to show the progress of
a playing audio. It gives information about the time or duration of the audio.
To implement this, there are two methods that we used. The methods are : -

• 1. GtkProgress Bar

• 2. GtkScale Button(slider)

GtkProgress Bar

The GtkProgress Bar is a widget which indicates progress visually. It shows the
progress of some process using percentages. For our project, we implemented
the GtkProgress Bar but for the sake of dynamics the interface, we used the
GtkScale Button(slider) which will be explained after to make it user friendly..

GtkScale Button(slider)

The GtkScale Button is a button which belongs to the GtkScale class that
is a slider widget for selecting a value from a range. This allows users to
click and go at any point of the scale. For our project, we implemented the
GtkScale Button(slider) using another powerful tool from GTK which is the
gint g timeout add (guint32 interval, GtkFunction function, gpointer
data); function. This function is helpful to execute the function parameter
within a time interval of the interval parameter in the function.

For more information about the documentations, click here:

• https://developer.gnome.org/gtk3/stable/GtkProgressBar.html

• https://developer.gnome.org/gtk3/stable/GtkScale.html

• https://developer.gnome.org/gtk3/stable/GtkAdjustment.html

76

https://developer.gnome.org/gtk3/stable/GtkProgressBar.html
https://developer.gnome.org/gtk3/stable/GtkScale.html
https://developer.gnome.org/gtk3/stable/GtkAdjustment.html

6.4.4 Volume Button

In this section, we implemented a button that controls the volume of an au-
dio with the help of GtkVolume Button and the information given from the
pulseaudio which contains the volume. Since the GtkVolume button functions
as a slider, we had to modify the information of the volume from the pulseaudio
so as to get the value of the scale.

The implementation is as follows: -

1 void cvolume (GtkWidget ∗widget a t t r i b u t e ((unused)) , gpo in t e r
userdata)

2 {
3 g tk p l aye r ∗ p laye r = userdata ;
4 i f (p layer−>player−>pa s t a t e >= DRAINED)
5 r e turn ;
6 gdouble value = g t k s c a l e bu t t on g e t v a l u e (GTK SCALE BUTTON(

player−>ui . volume)) ;
7 player−>player−>i n fo−>volume = value ;
8 setVolume (player−>p laye r) ;
9 r e turn ;

10 }

6.4.5 Name of artists

As the user choose the song to play in the designed interface, a component called
GtkLabel will display the name of the artist if it exists, otherwise it will just
display ”Unknown”.

The implementation is as follows:

1 void changeTit l e (gpo in t e r userdata)

77

2 {
3 g tk p l aye r ∗ p laye r = userdata ;
4 f i l e I n f o ∗ i n f o ;
5 i n f o = g e tF i l e I n f o (player−>player−>player−>i n fo−> l i s t) ;
6 g t k l a b e l s e t t e x t (player−>name , in fo−>a r t i s t s ? in fo−>a r t i s t s

: ”Unknown”) ;
7 f r e e (i n f o) ;
8 }

For more information about the documentations, click here:

https://developer.gnome.org/gtk3/stable/GtkLabel.html

6.5 The second defense

6.5.1 Information on songs

In this sub-part of the User Interface, one can find bellow the defined structures
that will be used in later shown functions. They will give a better understanding.

1 typede f s t r u c t p l a y l i s t t
2 {
3 pthread t ∗ threads ; // check i f the task i s f i n i s h e d
4 wav ∗∗w; // headers
5 f i l e ∗∗ f ; // f i l e s IO
6 s i z e t nb e l ; // nb o f e lements cu r r en t l y
7 s i z e t s i z e ; // t o t a l s i z e o f the l i s t in memory
8 s i z e t index ;
9 } p l a y l i s t t ;

10

11 typede f s t r u c t Us e r In t e r f a c e //To avoid g l oba l v a r i a b l e s (widgets)
12 {
13 GtkWindow∗ window ;
14 GtkButton∗ play pause ;
15 guint ID ;
16 GtkVolumeButton ∗volume ;
17 GtkScale ∗ s l i d e r ;
18 GtkAdjustment ∗adjustment ;
19 char ∗name chooser ;
20 GtkListStore ∗ d i a l o g l i s t s t o r e ;
21 GtkTreeView ∗ d i a l o g t r e e ;
22 GtkTreeSe lect ion ∗ s e l e c t ;
23 GtkLabel ∗name ;
24 GtkLabel ∗ genre ;
25 GtkLabel ∗album ;
26 GtkImage ∗ song image ;
27 GtkFileChooser ∗ aud io choose r ;
28 } Use r In t e r f a c e ;
29

30 typede f s t r u c t g tk p l aye r //Main s t r u c tu r e to a c c e s s data
31 {
32 char ∗ f i l ename ;
33 pa p laye r ∗ p laye r ;
34 f i l e ∗data ;
35 Use r In t e r f a c e u i ;
36 p l a y l i s t t ∗ p l a y l i s t ;

78

https://developer.gnome.org/gtk3/stable/GtkLabel.html

37 } g tk p l aye r ;

In this defense, H3rtz.stdio worked on making a better looking User Inter-
face. For that, the team chose to display the most important information which
are :

1. Album

2. Genre

3. Artist4

4. Name

The next sub-subsections will give more details about these features. But first,
here is a picture that quickly shows the features of the interface that will be
explained soon in the next sub-subsections.

Figure 6.1: Main function of the album getter

79

6.5.2 Album of the song

The used data are obtained by parsing with a function that transforms the
information of the header into an object of strings. When they are retrieved, to
access the album, the code checks whether that specific info is given or not. If it
is, the right album will be displayed in the label GtkLabel *album. Otherwise,
it will display ”Unknown”.

1 void album(gpo in t e r userdata)
2 {
3 g tk p l aye r ∗ p laye r = userdata ;
4 f i l e I n f o ∗ i n f o ;
5 i n f o = g e tF i l e I n f o (player−>player−>player−>i n fo−> l i s t) ;
6 g t k l a b e l s e t t e x t (player−>ui . album , in fo−>album ? in fo−>album

: ”Unknown”) ;
7 f r e e (i n f o) ;
8 }

Figure 7: Main function of the album getter

6.5.3 Genre of the song

This part works just like the previous part, but here the genre will be displayed
in the GtkLabel *genre.

1 void genre (gpo in t e r userdata)
2 {
3 g tk p l aye r ∗ p laye r = userdata ;
4 f i l e I n f o ∗ genre ;
5 genre = g e tF i l e I n f o (player−>player−>player−>i n fo−> l i s t) ;
6 g t k l a b e l s e t t e x t (player−>ui . genre , genre−>genre ? genre−>

genre : ”Unknown”) ;
7 f r e e (genre) ;
8 }

Figure 8: Main function of the genre getter

6.5.4 Artist of the song

The data is accessed in the same way as the previous part. To access the artist
of the playing song, the code checks whether that specific info is given or not.
If it is, the artist will be displayed in the label GtkLabel *name. Otherwise, it
will display ”Unknown”.

1 void changeTit l e (gpo in t e r userdata)
2 {
3 g tk p l aye r ∗ p laye r = userdata ;
4 f i l e I n f o ∗ i n f o ;
5 i n f o = g e tF i l e I n f o (player−>player−>player−>i n fo−> l i s t) ;
6 g t k l a b e l s e t t e x t (player−>ui . name , in fo−>a r t i s t s ? in fo−>

a r t i s t s : ”Unknown”) ;
7 f r e e (i n f o) ;
8 }

Figure 9: Main function of the artist getter

80

6.5.5 Name of the song

It is important to precise that the ”name of the song” is not the display on the
file chooser. It is actually given in the header, and retrieved by the function
getFileInfo(), then accessed bellow with f→name. The displayed code bellow
checks whether that specific info is given or not. If it is, the song’s name will be
displayed in the GtkTreeView (later explained in the section 4.3.1). Otherwise,
it will display the path to the song.

1 void append (GtkWidget ∗widget a t t r i b u t e ((unused)) , gpo in t e r
userdata)

2 {
3 g tk p l aye r ∗ p laye r = userdata ; // I n i t i a l i z a t i o n o f p laye r

s t r u c tu r e
4 GtkTreeIter i t e r ; // Value that hold the

addre s s e s o f l i s t i tems
5 gchar ∗ s t r = player−>ui . name chooser ; // Name o f the f i l e

chosen
6 player−>ui . d i a l o g l i s t s t o r e = GTK LIST STORE(
7 g tk t r e e v i ew ge t mode l (p layer−>ui . d i a l o g t r e e)) ; //

Gett ing the model from glade
8 tup l e data = ParseTrack (s t r) ; // Gets the i n f o about the

t rack
9 i f (! data . a | | ! data . b)

10 r e turn ;
11 player−>p l a y l i s t −>f [p layer−>p l a y l i s t −>nb e l] = data . a ;
12 player−>p l a y l i s t −>w[player−>p l a y l i s t −>nb e l] = data . b ;
13 player−>p l a y l i s t −>nb e l++;
14 g t k l i s t s t o r e a pp e nd (player−>ui . d i a l o g l i s t s t o r e , &i t e r) ; //

Appending e lements to the l i s t
15 wav ∗w = data . b ;
16 f i l e I n f o ∗ f = g e tF i l e I n f o (w−> l i s t) ;
17 char ∗ entry = f−>name ? f−>name : s t r ; // Gett ing the f i l ename
18 f r e e (f) ;
19 g t k l i s t s t o r e s e t (player−>ui . d i a l o g l i s t s t o r e , &i t e r ,

LIST ITEM , entry , −1) ;
20 // Sets the value o f one or more c e l l s in the row r e f e r en c ed by

i t e r
21 }

Figure 10: Main function of the song’s name getter

81

6.5.6 Playlist

Before starting directly explaining about the implementation process we will
introduce the tools that we used for this feature. Mainly, there are two tools
that we used for this feature which are pulseaudio and GTK TreeView widget
from GTK. In the previous report we gave brief introduction about pulseaudio
and GTK. Hence, we will give the links to get more information about these
two tools below1 2.

GTK TreeView

The GTK TreeView 3 is a widget used for displaying both trees and lists. It
is part of the GTK Container tools hierarchically. To use this widget, we need
to define a data structure. By data structure, it means either the lists or trees.
For our project and specifically this defense, we used the list data structure.
To define this structure in GTK, we used the GTK ListStore 4 which allows us
to input a list inside a tree view build by the GTK TreeView. The ListStore
structure contains different features like adding rows and columns, and with the
integration of GTK TreeView, it makes items of a list clickable. It also helps
the user to modify the items of a list.

We used two different structures of lists to take care of adding, removing
elements and the stream of the loaded audio files. To be more precise, the GTK
part is performing addition and removal of items from the list store while the
other list structure concerned with PulseAudio is controlling the stream, moving
to the next song or previous song and so on. These processes are running at the
same time.

Basically, using the GTK TreeView widget we were able to add and remove
different items in a list which is really important for the implementation of a
playlist. The functions implemented are as follows: -

Adding item

1 void append (GtkWidget ∗widget a t t r i b u t e ((unused)) , gpo in t e r
userdata)

2 {
3 g tk p l aye r ∗ p laye r = userdata ; // I n i t i a l i z a t i o n o f p laye r

s t r u c tu r e
4 GtkTreeIter i t e r ; // Value that hold the

addre s s e s o f l i s t i tems
5 gchar ∗ s t r = player−>ui . name chooser ; // Name o f the f i l e

chosen
6 player−>ui . d i a l o g l i s t s t o r e = GTK LIST STORE(
7 g tk t r e e v i ew ge t mode l (p layer−>ui . d i a l o g t r e e)) ; //

Gett ing the model from glade

1https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/
2https://developer.gnome.org/gtk3/stable/
3https://developer.gnome.org/gtk3/stable/GtkTreeView.html
4https://developer.gnome.org/gtk3/stable/GtkListStore.html

82

https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/gtk3/stable/GtkTreeView.html
https://developer.gnome.org/gtk3/stable/GtkListStore.html

8 tup l e data = ParseTrack (s t r) ; // Gets the i n f o about the t rack
9 i f (! data . a | | ! data . b)

10 r e turn ;
11 player−>p l a y l i s t −>f [p layer−>p l a y l i s t −>nb e l] = data . a ;
12 player−>p l a y l i s t −>w[player−>p l a y l i s t −>nb e l] = data . b ;
13 player−>p l a y l i s t −>nb e l++;
14 g t k l i s t s t o r e a pp e nd (player−>ui . d i a l o g l i s t s t o r e , &i t e r) ; //

Appending e lements to the l i s t
15 wav ∗w = data . b ;
16 f i l e I n f o ∗ f = g e tF i l e I n f o (w−> l i s t) ;
17 char ∗ entry = f−>name ? f−>name : s t r ; // Gett ing the

f i l ename
18 f r e e (f) ;
19 g t k l i s t s t o r e s e t (player−>ui . d i a l o g l i s t s t o r e , &i t e r ,

LIST ITEM , entry , −1) ;
20 // Sets the value o f one or more c e l l s in the row r e f e r en c ed by

i t e r
21 }

Figure 11: Function to add a song to the playlist

Removing item

1 void remove item (GtkWidget ∗widget a t t r i b u t e ((unused)) ,
gpo in t e r userdata)

2 {
3 g tk p l aye r ∗ p laye r = userdata ; // I n i t i a l i z a t i o n o f p laye r

s t r u c tu r e
4 GtkTreeIter i t e r ; // Value that hold the

addre s s e s o f l i s t i tems
5 GtkTreeModel ∗model ;
6

7 model = g tk t r e e v i ew ge t mode l (p layer−>ui . d i a l o g t r e e) ; //
Gett ing the model from glade

8 player−>ui . s e l e c t = g t k t r e e v i ew g e t s e l e c t i o n (player−>ui .
d i a l o g t r e e) ; // Gett ing the GTK TreeSe l e c t i on from glade

9

10 i f (g t k t r e e m o d e l g e t i t e r f i r s t (model , &i t e r) == FALSE) //
Checking i f the l i s t i s empty

11 r e turn ;
12

13 gboolean found = g t k t r e e s e l e c t i o n g e t s e l e c t e d (player−>ui .
s e l e c t ,

14 &model , &i t e r)
;

15 i f (! found)
16 r e turn ;
17 GtkTreeIter i t e r b i s ;
18 i f (g t k t r e e m o d e l g e t i t e r f i r s t (model , &i t e r b i s) == FALSE)
19 r e turn ;
20 gchar ∗key ;
21 g tk t r e e mode l g e t (model , &i t e r , LIST ITEM , &key , −1) ;
22 s s i z e t l = f indIndex (player , key) ; // Gett ing the index o f the

songs in the l i s t
23 i f (l == −1)
24 r e turn ;

83

25 s i z e t i = (s i z e t) l ;
26 i f (i >= player−>p l a y l i s t −>nb e l)
27 r e turn ;
28 i f (i == player−>p l a y l i s t −>index)
29 {
30 Pause (player−>p laye r) ; // Pause the audio
31 terminateStream (player−>p laye r) ; // Terminate the stream
32 }
33 removeTrackAtIndex (player−>p l a y l i s t , i) ; // Remove from the

PulseAudio l i s t s t r u c tu r e
34 g t k l i s t s t o r e r emov e (player−>ui . d i a l o g l i s t s t o r e , &i t e r) ; //

Remove from the Gtk L i s t S t o r e
35 }

Figure 12: Function to remove a song from the playlist

Removing all items

1 void r emove a l l (GtkWidget ∗widget a t t r i b u t e ((unused)) , gpo in t e r
userdata)

2 {
3 g tk p l aye r ∗ p laye r = userdata ; // I n i t i a l i z a t i o n o f p laye r

s t r u c tu r e
4 GtkTreeModel ∗model ;
5 GtkTreeIter i t e r ; // Value that hold the addre s s e s o f l i s t

i tems
6

7 model = g tk t r e e v i ew ge t mode l (p layer−>ui . d i a l o g t r e e) ; //
Gett ing the model from glade

8

9 i f (g t k t r e e m o d e l g e t i t e r f i r s t (model , &i t e r) == FALSE)
10 {
11 r e turn ;
12 }
13

14 g t k l i s t s t o r e c l e a r (player−>ui . d i a l o g l i s t s t o r e) ; // Remove
from GTK Li s tS t o r e

15 i f (p layer−>player−>pa s t a t e == ACTIVE)
16 {
17 Pause (player−>p laye r) ;
18 terminateStream (player−>p laye r) ;
19 }
20 c l e a nP l a y l i s t (p layer−>p l a y l i s t) ; // Remove from the PulseAudio

l i s t s t r u c tu r e
21 }

Figure 13: Function remove all song from the playlist

84

Playlist Design samples

In this project we designed two layouts on how to show the playlist. The image
samples are below :

Figure 15: First version of the playlist’s display

85

Figure 16: Second version of the playlist’s display

86

Figure 17: Second version on Ubuntu’s dark mode

After a discussion upon the aesthetics and functionality of where the playlist
should be put, we decided to use what you observe in the second sample. For
this defense we’re creating a playlist of songs even for a single song because it’s
more manageable which is also the reason why we picked the second sample.
Furthermore, it is noticeable that there is a background color change in these
three samples which comes from the theme that user uses. On Ubuntu, if one
uses a dark theme, then the our application would look like the second sample,
otherwise the first or second one is the default.

87

6.6 The last defense

For this last defense, all the features that were supposed to be implemented and
linked to the GUI are done. Which lead us to add small but good details to the
interface such as multiple dialog widgets to handle problems and guide the user
when it is used in the wrong way.

6.6.1 Encoder

The encoding process which have been done since the second defense is finally
included in the GUI! It retrieves the information of the actual song and wait for
the input of the user. Once the changes have been saved, only information which
are not empty or different than the actual information will be taken in account.
Once the changes are done, a new song file with those changed information will
be generated in same path.

Figure 18: A slice to show the edit information dialog box.

6.6.2 Converter

To use the converter, one should choose the song to compress, then a new
dialog will pop up. One will then enter a name for the conversion, which will
also create a new file with the compressed format. To have more information
on the compression, please read the section 5 (Creating a new file format).

88

6.6.3 Dynamic logo for file formats

For bring more dynamism and content for the view of the user, the GUI displays
by default a logo for all type of music. But it changes when the chosen song is
of type MP3 or WAV.

Figure 19: A view of a chosen MP3 song.

Figure 20: A view of a chosen WAV song.

Figure 21: A view of the default logo.

6.6.4 About

Among new features that are added, we have a dynamic about box that makes
the interface looks more complete with the information on the project and the
members!
As one can see below, that’s what it looks like.

89

Figure 22: The dynamic About Us.

6.6.5 Warning Dialogs

As said in the introduction, there are multiples warning or message dialogs that
have been created in order to tell the user what is happening and how the user
interface should be used for a specific purpose. Let’s see an example bellow.

This warning pops up whenever the user wants to edit the information of the
playing song but there is no song chosen in the main widget.

6.6.6 File chooser extensions

In order to avoid errors because the user chose the wrong type of file in the file
chooser, we added extensions to it, and now it will only display folders and only
songs of type MP3, WAV and FLAC will be displayed. This feature will also
make the user’s experience better because the file chooser will look less messy.

6.7 Conclusion

The end of the project is finally reached and H3rtz.stdio is proud to present the
completed version of the user interface!

90

Chapter 7

Website

With the project, we must provide a functional website to showcase the evolution
and the features. Its address is:

https://areas0.github.io/h3rtz/

A screenshot of our home page

7.1 Design

Our website uses a template created for the S2 project by Jean1. With some
improvements plus some editing, the website is already functional. It features:
— A classic homepage
— A download page with some documents
— A task & issues page
— A page for the credits
— An “about us” page

1https://areas0.github.io/website/

91

https://areas0.github.io/h3rtz/
https://areas0.github.io/website/

Our website fits all the requirements for the last presentation and offers a di-
verse and rich experience with the latest improvements done for this defense.

The homepage features a small news section, a menu with some additional
and useful links.

The download page is a place for all documents, executable made during the
semester.

The task and issues page offer some details concerning how we have progressed
overtime on the project. It will include some information on the bugs we have
fixed.

The “about us” page includes a description of the group and all group members.

The main framework used is Bootstrap2. It offers dynamic layering to adapt
the website to all sizes of screens.

7.2 Hosting

The website is hosted on GitHub Pages3. It offers reliable and easy-to-use service
to host a simple website that requires no dynamic changes. You have probably
guessed it, but the website must be in a GitHub repository to be hosted and
updated. Updates are done by following the commits on the repository’s master
branch.

2https://getbootstrap.com/
3https://pages.github.com/

92

https://getbootstrap.com/
https://pages.github.com/

Chapter 8

Book of specifications:
follow-up

8.1 Assignment tabular

We will assign a letter to every member to make our schedule more readable

1. KB : Kevin-Brian

2. J : Jean

3. L : Lam

4. Y : Yabs

Tasks KB J L Y

Multi-threading × × × ×
Audio formats × ×
File Compression × ×
GUI × ×
Website × +

Cross : (×) Person in charge and Plus : (+) Assistant.
As you can see multi-threading will involve everybody.

93

8.2 Progression

We needed to consider how we were going to handle our time based on the three
main deadlines :

1. The 1st presentation (March 29th - 2nd April, 2021)

2. The 2nd presentation (3rd - 7th May, 2021)

3. The 3rd presentation (14th - 18th June, 2021)

We made a tabular to make it easy to read. The 1st tabular below is the
progression goals that we set from the beginning of the project :

Tasks 1st 2nd 3rd

Multi-threading 30 70 100

Audio encode - WAV 30 100 100

Audio decode - WAV 80 100 100

Audio encode - MP3 0 60 100

Audio decode - MP3 30 80 100

User Interface 40 70 100

Conversion Support 0 40 100

Website 100 100 100

And this is our actual progression on the project :

Tasks 1st 2nd 3rd

Multi-threading 75 90 100

Audio encode - WAV 70 100 100

Audio decode - WAV 80 100 100

Audio encode - MP3 0 35 35

Audio decode - MP3 (GST) 75 90 100

Audio encode - H3Z (NEW) 0 0 100

Audio decode - H3Z (NEW) 0 0 100

User Interface 50 70 100

Conversion Support 0 40 100

Website 100 100 100

94

We changed the book of specifications once for the first defense to remove parts
of the projects too complicated to realize in the frame of time that we had.
Moreover, due to the level of complexity of the MP3 encoding, we were forced
to abandon also that part of the project. We replaced it with a lossless file
format created by the group. For more details, please see the previous chapters.

95

Chapter 9

Conclusion

This report concludes our one semester wide journey. It had its ups and downs
with great successes and some failures with the MP3 file format.
With the failures, we learned that we could be creative and create a file format
using existing norms. With the successes we had, we built a solid base of knowl-
edge which will be handy next year.

We built a GUI with a complete set of features. It is followed by a full backend
that provides audio playback via PulseAudio & algorithms for file compression.
These features are well polished and perform well thanks to the wide use of
deferred callbacks and multi-threading. We are proud of the global result and
we had a good time working on this project.

Thank you.

96

	Introduction
	Wave file format
	Introduction to the format
	IO: handling files
	Decoding process
	Introduction to headers
	Parser: main execution loop
	Parser: the RIFF chunk
	Tool: merging bytes
	Parser: the FMT chunk
	Parser: the FACT chunk
	Parser: the DATA chunk
	Parser: the LIST chunk

	Encoding process
	Writing the new header
	GUI version
	Software used

	Conclusion

	PulseAudio - Multi-threaded API
	Definitions
	Main steps of implementation & features
	Storing objects in structures
	Implementation
	Multi-threading, callbacks, signals: how it works
	States
	Creating a PulseAudio player using the library
	Creating a stream from a Wave file
	Sending audio samples to play sound
	Pausing & Resuming audio
	Terminating & Draining a stream
	Offsetting: back and forth in the tracks
	Volume
	Timestamps
	MP3 and other formats playback

	Conclusion

	MP3 Encoding
	Time-Frequency Filterbank
	Analysis Subband Filter
	Implementation

	Psycho-acoustic model
	Introduction
	Definitions
	Steps in implementation
	FFT: getting the sound pressures
	SPL determination for subbands
	Tonal and non-tonal components
	Decimation: remove useless sounds
	Masking thresholds for non-tonal and tonal components
	Global masking threshold
	Minimum masksing threshold

	Conclusion

	Creating a new file Format
	Huffman Coding
	Introduction
	Huffman Compression Algorithm
	Huffman Decompression Algorithm

	Adaptation of WAVE file format
	General encoding process
	Decoding
	Linking to PulseAudio - Back-end
	Linking with GUI

	GUI
	Introduction
	Glade
	GTK
	The first defense
	File chooser
	Play and Pause button
	Progress Bar
	Volume Button
	Name of artists

	The second defense
	Information on songs
	Album of the song
	Genre of the song
	Artist of the song
	Name of the song
	Playlist

	The last defense
	Encoder
	Converter
	Dynamic logo for file formats
	About
	Warning Dialogs
	File chooser extensions

	Conclusion

	Website
	Design
	Hosting

	Book of specifications: follow-up
	Assignment tabular
	Progression

	Conclusion

