H3rtz.stdio
Report #1

Jean ” Areas” Bou Raad
Kevin-Brian "KB” N’Diaye
Thanh Lam Nguyen ” Velellah”
Yabsira Alemayehu MULAT ”Yabs”

A2ARTZ.STD0XO

Contents

Introduction

WAYV decoding

2.1 Parsing the headers: global process
2.2 Parsingthe RIFF
2.3 Parsing the DATA block
2.4 Parsingthe FMT o o
2.5 Parsing the FACT block
2.6 Parsing the LIST block
2.7 Conclusion

WAV encoding

3.1 Writing theraw file. 0oL
3.2 Writing the new header
3.3 Softwareused
3.4 Conclusion e

Audio player: PulseAudio

4.1 Principle of implementation
4.2 TImplementation L Lo o
4.2.1 Structures
4.2.2 Initializationo o
4.2.3 Writing the audiodata
4.2.4 Terminating & draining a stream
4.25 Timestampso Lo
426 Volume
4.2.7 Forwarding/Rewinding
4.2.8 MP3 and other formats playback
4.2.9 Testing & Struggles oL
4.3 Conclusion

GUI: User Interface

51 Glade e
52 GTK e
5.3 Components of the Interface
5.3.1 Filechooser
5.3.2 Play and Pause button L.
5.3.3 ProgressBar 0oL
5.3.4 Volume Button
5.3.5 Nameofartists
5.4 Conclusion

Website
6.1 Design
6.2 Hosting

Assignment tabular
Progression

Conclusion

30
30
31

32

33

34

1 Introduction

In this first report, we will present the main achievements of our team during
this first period. A lot has been done and overall we have made good progress
on both audio decoding and the user interface.

Now that we have better knowledge about audio decoding, we are more aware of
the difficulties that are to come. Hence, we delivered in addition to this report
a new book of specification.

The first part of our report will be about the WAV file format with its de-
coding and encoding. Our team has achieved a very complete header parser

and a prepared a raw to wav format encoder. These features are the basis used
to decode other file formats such as MP3, AAC, FLAC etc...

The second one will bring details on the implemented of the audio player via
PulseAudio. The audio back-end is almost fully implemented. This part will
detail the steps and concepts around the implementation of such a player.

Finally, the progress on user interface will be shown. The part showcases the
integration between the audio back-end and GTK, and the work done on design
with Glade.

2 WAV decoding

First thing off, the wave format is old, and so it has documentation. As a
reminder, its main characteristics are:

1. Uncompressed: this format holds most of the time PCM (pulse-code mod-
ulation). It is given by most software to the audio driver to create sounds.
One could say that it is as low level for audio as C is for programming
languages.

2. Wide support: many operating systems support it. However, some can
have equivalents (e.g.: Mac OS).

3. Consistent: the format has not evolved much over the years. Hence, it
was easier to determine all cases for the header.

With all the above, one must note that files are divided into blocks of data. The
data inside a file is not only PCM data. They contain most of the information
about the file itself. It can be the bitrate, the song’s title, the type of audio,
etc. ..

2.1 Parsing the headers: global process

All audio formats contain a header. It helps the software know how to de-
compress the data correctly (if the audio is compressed), give the audio driver-
specific information such as the bitrate, the number of bits per sample. There
are multiple types of blocks in a WAV file: RIFF, FMT (3 variations), FACT,
DATA, LIST. Each of them must be parsed separately and have its specifica-
tions.

While reading the data mapped in memory using the function mmap, we need
to identify each block. How do we do that? According to the standard, all
chunks begin with their identifier: those who were listed above. However, they
are only four characters without the ending (NULL) character. So, to correctly
detect the names, we used their big-endian value as four characters.

For instance, in big-endian, RIFF can be written as four single bytes with
their ASCII code: R: 0x52 I: 0x49, F: 0x46 (two times). Together, they form
0x52494646. For instance, "DATA” becomes 0x64617461. So, we need to com-
pare those values to the ones currently being read by the program. Using some
bit-shifting operation, we can easily convert bytes to 32 bits integers. The code
is as follows:

// Fast 4 bytes to int conversion (merging) BIG ENDIAN
// @param data: must be an at least 4 bytes long array
_-int32_t intConversionBE (unsigned char xdata)

{
return (data[0] << 24) | (data[l] << 16) | (data[2] << 8) | (
data[3]) ;

Figure 1: The integer conversion function

Once identified, a block always contains after its identifier a size (regular in-
teger). Finally, after that, it varies from header to header. Hence, the next
parts will detain each block, their specification, and how they are parsed by the
program. Even though this does not matter at such a low scale, this method
is way faster than traditional comparison between strings with stremp. Indeed,
four bit-shifting operations and one comparison are needed.

Our wrapper for the complete header is as follows:

// this generic type contains all wav chunks
// Warning: some can be null
typedef struct wav

riff sriff; // cannot be modified
union // store both types at the same place: memory efficient

fmt *fmt;
fmt_float *fmt_float;
fmt_extensible xfmt_extensible;
}i
fact xfact; // optional: often used for float
struct data *xdata; // unvariable
fmt_type format; // casting helper
list =list;
} wav;

2.2 Parsing the RIFF

Below, you can find an example of a RIFF block.
typedef struct riff

{

char riff[4];//contains 4 bytes

int fileSize; //contains 4 bytes

char fileFormatId [4]; // contains 4 bytes
}oriff;

figure 2: Typical riff structure

As usual, the four first bytes contain the string ”RIFF” and then the next four
bytes hold the file size. Indeed, the RIFF is considered as a master block of the
file. After the size, the file has another identifier: the main format of the file:
wave. If it is not wave, then the program will abort the process because the
data is not a wave file.

2.3 Parsing the DATA block
Here, you can find the typical structure of a DATA chunk:

typedef struct data

char data[4]; // entry point for real data
int data_bytes; //number of bytes in the data chunk
unsigned char =chunk;

} data;

Figure 3: Typical data structure

From now on, we will not remind you the details about the two first parts of
each block being the identifier and its size.

This block holds the audio data, the one that must be played by the program.
Hence, this block is larger than the others.

The attribute chunk simply points to the beginning of the audio data. It is
already allocated in the memory thanks to the initial mapping.

2.4 Parsing the FMT

This block is named FMT as a shortcut for FORMAT. Hence, one can deduce
easily that it contains information about the audio format. In terms of impor-
tance, this block ranks high. There are three variants of this header (classic,
float, extensible). We will provide more details concerning them later in this
part. Below, you can find the classic version of the format block.

typedef struct fmt

//format block id 4B

char fmt[4];

// classic 16b

int blocSize;

//2B see enum compression_codes
unsigned short AudioFormat;
short channel; //2B

int sampling_freq; // 4B
//important 4B //number of bytes to read per sec
int bitrate;
//2B NbrChannels % BitsPerSample/8
short blocrate;
//2B //8—-16—24—32—64 bits
short samplerate;
} fmt;

Figure 4: Basic format (FMT) structure

=

w N

16

The first attribute is an identifier (AudioFormat). Those help the program
determine the kind of audio data inside. Technically, the wave standard supports
many file formats but most of them are rarely used. Below, you can find the
most used in an enumeration to identify them:

//most common compression modes for wav
enum compression_codes
{
any = 0, //if the format doesn’t need this info
PCM = 1, //used
ADPCM = 2,
PCM_float = 3, //used for 32—64bits formats
alaw = 6,
Amu_law = 7,
IMAADPCM = 17,
Yamaha = 20,
GSM = 49,
G721 = 64,
MPEG = 80, // used
WaveFormatExtensible = 65534, //used
Experimental = 65536,

Figure 5: List of formats with their identifier as integers

Then there is the attribute channel. It indicates if the file has stereo, mono,
or multi-channel audio data. Again, usually the most common are stereo and
mono.

The sampling frequency (44100 Hz, 48000 Hz, 96000 Hz for instance), the bitrate
(varies from file to file), and the number of bits per sample, are also available in
this block. Concerning the variations, they add data to the structure without
modifying the existing attributes (order and size). The IEEE float PCM varia-
tion adds an attribute to get the offset to read the file correctly.

The second extension, the wave extensible format, can be considered as a sub-
block.

// 40 bytes bloc WAVEEXTENSIBLE
typedef struct fmt_extensible

{

// same as figure 4...

short extension_size;

short valid_bytes_ps;

int channel_mask;

char sub_format[16]; //contains the new format
} fmt_extensible;

Figure 6: Typical extension of the format structure (everything above remains
the same)

When this extension is present in a file, the audio identifier is replaced with
an indicator to tell the software to look for additional information (see Wave-
FormatExtensible in the enumeration compression codes above). There is one

major add-on to this format: sub-formats codes and channels masks. The last
one provides a repartition of speakers in space when playing multi-channel audio
(for instance 5.1/7.1 surround audio). For the sake of simplicity, we decided to
ignore this data when playing audio, as we aim to play mono and stereo data
correctly.
Concerning the sub-format identifier, it is a 16 bytes (128 bits) identifier. It is
the equivalent of compression codes but in a wider range.
However, this led to an unexpected challenge: handling 128-bits integers.
With C99, 128 bits integers are included as a standard type. However, com-
pilers such as GCC or CLANG cannot handle 128-bits integers constants nor
have enumerations with this kind of indexing. Moreover, support varies from
platform to platform, hence the need for this easiest solution. To bypass GCC’s
limitations with enumeration, we used constants. However, as stated, GCC
cannot compile directly 128-bits constants. So, instead, we used bit shifting to
get it right. Indeed, GCC has no problem evaluating 128-bits expressions while
compiling. We split the number into two longs and shifted the first part 64-bits
to the left. Below, you can find an example:
// compiler constants cannot be larger than 64 bits so bit shifting
must be used

const __uintl128_t PCM.CODE = ((--uint128_t) 0x0100000000001000 <<
64) | 0x800000aa00389b71;

Figure 7: example of a 128-bits integer constant definition to trick GCC

With some modifications to the previous method, the conversion from the array
of characters was easily done to compare with those constants. As you may have
noticed, the format block is held in the main structure thanks to a union. We
provide a link to explain what a wunion is, just in case:
https://www.wikiwand.com/en/Union_type.

It is convenient for our use case because all the variants of our format block
have their common attributes in the same order and occupy the same space in
memory. So, whatever the type of block, accessing the attribute bitrate via the
fmt_float, fmt (classic), fmt_extensible, will not change anything. And when we
need to know which kind of format block we have, the main structure contains
an enumeration to indicate that.

2.5 Parsing the FACT block

This block is optional. It is present most of the time when the audio is PCM
float data. It contains little information, which is not essential to our project,
so we will not provide details concerning their roles.

2.6 Parsing the LIST block

The list is specific in terms of structure. It indicates the beginning of a list of
elements inside the current block. It has no predefined size. Its main purpose

is to hold information about the music itself. For instance, it can contain the
title, the album, the date of publication, the software used to encode the file,
and more... This block is obviously optional.

The variable nature of this block led to a special structure. We adopted a linked
list with a sentinel to parse the data.

// Contains various info

// linked list with sentinel structure

typedef struct info

{
char infold [4];
unsigned int size;
char xdata;

] struct info *next;

} info;

typedef struct list

{
char list [4];
int chunk_size;
unsigned char xdata;
struct info *xinfos;

} list;

Figure 8: Definition of the INFO and LIST chunks

10

Each node contains an identifier. It says what the data is about. Below, you
can find an enumeration with the most useful identifiers:

typedef enum infolds

-

3 TARL = 0x4941524C, // archival location
4 IART = 0x49415254, // artist

5 ICMS = 0x49434D53, //commisionned

6 ICMT = 0x49434D54, // comments

7 ICOP = 0x49434F50, // copyright

8 ICRD = 0x49435244, // creation date

9 // skipped some codes (image related)
10 IGNR = 0x49474E52, // genre

11 IKEY = 0x494B4559, // keywords

12 INAM = 0x494E414D, // name

13 ISFT = 0x49534654, // software

14 ISRC = 0x49535243, // source

15 IPRD = 0x49505244, // Product

16 IPRT = 0x49505254, // track id

17 } infolds;

Figure 9: Enumeration of the information identifiers with their long value

Then there is a pointer to the key for the node.
Of course, we implemented methods to allocate and free the linked list.

2.7 Conclusion

Our current implementation of wav files is flexible and reliable. It offers a set
of functionalities, which can be considered as very complete. It has been tested
on various sets of files and has shown great performance with a parsing done in
less than 2 ms on average.

11

3 WAV encoding

This part will mostly be based on the parser used by the WAV encoding part.

What we needed to do for the first part was being able to take a WAV file
and recreate the same file using our parser.

As this part is modular, it will flow directly into the next part: Adding more
information given by the user or later the MP3 file.

First of all, we split the WAV file into two:

1. The .raw file containing the data section of the parser.
2. The new file containing the new header.

Keeping the raw signal will be really useful for the conversion support. How-
ever, important information such as:

1. Audio type (type of signal)
2. Channels
3. Estimated duration

Without those information, the signal won’t be read correctly no matter
what the format. In the future, a structure allowing an easy flow of those
information from a format to another will be very useful for conversion support.

3.1 Writing the raw file

Writing a RAW file from a WAV file boils down to two things :
1. Figuring out the size of the header
2. Writing a proper data structure

Because the size of the header depends on how much information it holds,
we need to figure out its size and use lseek(2).

The entire problem now becomes how can we figure out the exact size to
avoid skipping critical data and creating a partial signal for the new WAV file
which won’t be readable.

Conventions can change depending on the amount of data written into the
header.

Simple files will have different ways of writing data compared to files con-
taining long headers.

Thus, we will encode the data based on the WAV_EXTENSIBLE convention
which looks like this using Okteta.

The WAV_EXTENSIBLE stems from the XMP metadata convention where
the storage of metadata in files follow a few rules.

1. 3 null bytes will follow the size of the current chunk

12

1

2. If the size of the chunk is odd, a null bytes is added to balance everything
out.

3. And the rest contains conventions for what to name each chunk (artist,
genre and etc...)

The function:

size_t size_header (struct wav xh);

We keep the data section instead of the raw signal for extra information once
we open the file.

3.2 Writing the new header

Using the terminal and next time the GUI. We can add new information to the
file.
Things like:

1. The archive location
2. The artist
Copyrights

Creation date

Genre

Title

N ook W

etc..

Basically, any new information gets added to the linked list called list. It
contains information about the music itself which can be lacking for certain files.

The function write_header uses the fd from the new_file (old_file_2.wav) and
a new header (either from the old file or the user).

void write_header (int fd, struct wav sheader);

3.3 Software used

Because a broken header results in broken audio. We had to use a new software
to read the raw data itself to debug our progress.

We used Okteta, a raw data editor. It allowed to see where and how the
data is assembled in the header. But most importantly, it allowed us to debug
our functions for the WAV encoding.

For example, we noticed that 3 null bytes would be written after every chunk
size. The raw data is obviously written in hexadecimal so we found a way around
it.

13

1

//writes n null bytes for spacing
void write_space(int fd, size_t n)

{
for (size-t i = 0; i < n; i++)
{
unsigned char hex = 0x0;
if (write(fd, &hex, 1) < 0)
{
errx (1, "encode: write spacing failed”);
}
}
}

3.4 Conclusion

The WAV encoding was not challenging algorithmically but inconsistencies in
the header proved to be difficult and eerie.

So far, we used 14 samples exploring most of what WAV files have to offer.
The WAV encoding program works with 10 out of 14 for now.

4 Audio player: PulseAudio

To play raw PCM signals, we decided to use PulseAudio. Pulseaudio is soft-
ware available on every major distribution of Linux except one. An API is also
available to communicate with the software.

Hence, it was the perfect candidate for our project. There are other options,
for instance, with ALSA because PulseAudio is built on top of it. However, its
overall complexity was considered too hard.

We preferred to focus on other important parts of our project (audio decom-
pression). We will go into the details of the implementation, but one of the
advantages of PulseAudio is that it provides a multi-threaded and asynchronous
API. These features are mandatory to run a GTK interface in parallel.

All the functions mentioned are listed and explained in the following documenta-
tion: https://freedesktop.org/software/pulseaudio/doxygen/index.html

4.1 Principle of implementation

PulseAudio’s API provides a threaded mainloop. It relies on event polling to
send and receive signals when tasks are being run asynchronously. However,
these principles are new to us. There are multiple obligatory steps to get a
PulseAudio player running and playing audio correctly. First, initialize a main-
loop. It is the main piece of our program. The loop itself holds an API that
can be used for some particular operations.

The program needs to connect to the PulseAudio server running on the user’s
computer.

Then, it must create a stream to play audio smoothly.

14

https://freedesktop.org/software/pulseaudio/doxygen/index.html

Finally, once initialized, we have to pass the audio data to the streamer.

Of course, as for any asynchronous multi-threaded library with events, PulseAu-
dio uses callbacks for many things. One of these callbacks must be a function to
write data to a buffer provided by PulseAudio. Deferred callbacks do not block
our program. Hence, our interface can run while another thread is writing to a
buffer provided by the library.

This little paragraph represents only the outline. Many features are omitted
and will be detailed in the later parts.

15

4.2 Implementation
4.2.1 Structures

We already explained that PulseAudio works with many objects. Callbacks and
other functions need some of them to work. Hence, some structure was needed.
First, we have the main structure that contains an entry point to some file’s
data and PulseAudio’s objects:

typedef struct pa_player

{
wav_player sxplayer;
pa_objects xpulseAudio;
pa-info xinfo;
state pa.state; //enumeration
fileType type; // enumeration
pa_-time xutility ;

} pa_player;

Figure 10: Structure definition of a PulseAudio player

For this part, we will ignore the attributes player and pa_state.
The type pa_objects is our wrapper for all PulseAudio’s objects:

typedef struct pa_-objects

{

pa-context xcontext;
pa_threaded_mainloop =*loop;
pa-stream x*xstream;
pa_mainloop_api *api;
char xsink;
pa-usec-t xlatency;
pa_server_info xserver;

} pa-objects;

Figure 11: Definition of the PulseAudio objects structure

We give to callbacks and functions, linked to that part of the project most of
the time, a pa_player.

It is now the time for an introduction to the player states. We created an enu-
meration to determine the current state of our PulseAudio player. For instance,
there are states for the paused, playing, drained player. They are useful, es-
pecially for deferred callbacks. Indeed, they help prevent unexpected behavior
such as trying to drain a stream already empty. The enumeration is as follows:

16

1

typedef enum state

{
READY,
PLAYING,
PAUSED,
FINISHED,
DRAINED,
TERMINATED,

} state;

Figure 12: enumeration containing the different states of our player

4.2.2 Initialization

The two following functions are used by the program to initialize a mainloop
and then set up a stream:

int init_player (pa-player =xplayer);
int prepareStream (pa_player xplayer);

Figure 13: two prototypes related to initialization

They both return integers to have error handling with the interface. The first
function prepares a mainloop and connects it to a context. The context is auto-
matically linked by PulseAudio to an audio server. Those steps are immutable,
to be known, and examples in the documentation helped us get started.

These elements are then used by the second function to create a stream. To
create a classic stream, one needs:

1. An already parsed wave file: the wav_player must hold a file with its data
and characteristics. The steps below depend on this.

2. Sample specifications: they come from the file that we need to read. For
this, we created a function that matches the characteristics of a wave file
to its pa_sample_spec.

3. A channel mapping: the type pa_channel_map represents the channel char-
acteristics of a file. Briefly, it tells PulseAudio if the stream will be mono
or stereo.

4. Buffer attributes: it gives PulseAudio information on how one wants to
handle the buffer. For our project, we tell PulseAudio to process it auto-
matically. It can be for audio streaming software (network streams).

5. Flags: they tell PulseAudio how to handle the stream in various ways.
Most of them are used to tell the library to handle the things by itself
(latency, timings, for instance). Those features are headed towards server
developers.

6. Finally, by using pa_stream_new and pa_stream_connect_playback, we can
create a stream and connect it to the device (sink).

17

Our first implementation was functional but not ideal. Indeed, PulseAudio
evolves, new features are added. PulseAudio recently introduced a new ini-
tializer for streams. It is the function pa_stream_new_extended. PulseAudio’s
documentation is already not very complete and not easy to understand. With
that, it got worse: no mention of these functions in the main documentation
files. The implementation was done only with the help provided in the headers
of the library. But why did we decide to implement it? Because it allows us to
provide more data to the player concerning the file being played.

We understood how this new function worked after many hours of digging into
PulseAudio’s documentation. The initializer requires a pa_format_info object.
It merges the pa_sample_spec with the pa_channel_map but can contain more
data. A method in the library can set the format_info with the two previous
objects: pa_format_info_from_sample_spec. We can then add some more infor-
mation about the file being played using the info chunk from our wav file.

4.2.3 Writing the audio data

This part is critical because it must be fast and reliable. The callback function
is as follows:

void callback_write (pa-stream #stream, size_t requested_bytes, void
xuserdata) ;

Figure 14: declaration of PulseAudio write callback function

The library provides the two first parameters. We can choose freely the last
one. The process is as follows in a while loop till we have written on the buffer
the requested_bytes:

1. Determine the number of bytes we want to write: this can be arbitrary.

2. Initialize a buffer with pa_stream_begin_write. It handles memory alloca-
tion automatically.

3. Fill the buffer with data from the file. It can be accessed through the
pa_player structure, via the wav_player, and the wav object inside. The
block DATA contains a pointer to it. For simplicity, the reference is copied
directly as an attribute of wav_player.

18

1
2
3

typedef struct wav_player
{
wav *info; // the header
file =*track; // the mapping of the file
unsigned char *xdata; // pointer to the beginning of the
data
size_t offset; // reading offset
double time; // current timestamp
} wav_player;

Figure 15: Declaration of the wav player structure

4. Write it to the real buffer with pa_stream_write.

5. Update the offset for the file and the number of bytes written.

4.2.4 Terminating & draining a stream

As for memory allocation, cleaning a stream after use is necessary.

This operation is not trivial. Indeed, cutting a stream too early can discard
some audio data that needs to be played. For instance, after writing the last
few bytes, PulseAudio keeps around two seconds of data in its buffer. Cutting
as soon as the last byte is written would remove these two seconds.

To avoid such a thing, PulseAudio provides a draining function. A call to this
procedure returns a pa_operation object. This kind of object means that the
operation is run asynchronously, and will call a deferred callback function. To
verify that this operation is complete, we used a classical signal structure that
follows the steps below:

1 // Makes sure that we played all the samples before disconnecting

the stream

2 void drainStream (pa_player xplayer)

o

pa_objects xpa = player—>pulseAudio;
pa_-threaded_-mainloop x*loop = pa—>loop;
pa-stream x*xstream = pa-—>stream;

// locks the mainloop to avoid errors
pa_threaded_mainloop_lock (loop);

// starts a draining operation, it is asynchronous
pa_operation xop = pa_stream_drain (stream, &callbackDrain, loop
)

// we wait for it to be done

while (pa_operation_get_state(op) != PA OPERATION.DONE)
pa-threaded_mainloop_-wait (loop);

player—>pa_state = DRAINED; // the operation is done

pa-operation_unref(op);

// we can unlock and continue business as usual

pa-threaded_mainloop_unlock (loop);

Figure 16: example of a typical draining process with multi-threading and

deferred callbacks

19

If you have already done some multithreading in C, this should look similar to
the structure with pthreads. We lock first the main thread, then wait for a
signal from the deferred callback. Finally, we can disconnect the stream and
unlock our thread. When we want to switch tracks quickly, another procedure
must be used. It works as follows:

1. Suspend the current stream - sink with pa_context_suspend_sink_by_name
(asynchronous)

2. Disconnect then the stream with pa_stream_disconnect
3. Dereferencing the stream with pa_stream_unref

Then, if we want to play another file, we must create a new stream. The
prepareStream alone does the job.

4.2.5 Timestamps

Like any regular audio player, we need to know the current timestamp while
playing a file. It might look like a simple process, but It can be tricky. Indeed,
the way to get the current timestamp of a played file is to divide the offset
by the bitrate (number of bits per second of audio). However, this method is
inaccurate. Indeed, PulseAudio is fed with audio data ahead of time. That
means that the offset is always farther in the buffer than the audio currently
played.

And so, getting latency is key. As usual, PulseAudio did not provide a guide to
do it. Hence, there were many difficulties. We ended up using a simple function
from the library pa_stream_get_latency. It retrieves pa_usec_t data, which is a
long integer representing the number of microseconds of latency. With some
more computations, we were able to retrieve the correct timestamp.

4.2.6 Volume

PulseAudio comes with volume management built-in. The documentation ad-
vises explicitly not to modify system volumes with the library. The main reason
is that volume scales differently from device to device.

Hence, we implemented a way to modify the volume of the input of our stream.
It is not yet available in the interface.

PulseAudio implemented the volume as a double structure. Indeed, for multi-
channel audio, PulseAudio can set a specific volume per channel (for instance,
one for the left ear and another for the right). Each channel (represented by
the structure pa_cvolume) has a pa_volume_t attribute which is the real volume
of the current channel object. They are stored in an array in the pa_cvolume
structure. The function to modify the volume works as follow:

1 void getVolume(pa_player =xplayer);
2> void setVolume(pa_player splayer);

Figure 17: two prototypes used to interact with the volume via PulseAudio

20

A W N e

Information about the current volume of our player is stored in our structure
pa_info:

typedef struct pa_info

{
// modify that value to change the volume
// must be a double between 0.0 and 1.0
double volume;
// sink input id
uint32_t id;

} pa_info;

Figure 18: Declaration of the PulseAudio information structure

The attribute id is an unique identifier used to retrieve the volume attached to
the stream. As mentioned before, this is not a system global variable.

4.2.7 Forwarding/Rewinding

Forwarding or rewinding during playback is always a story about offsets. When

we explained the write callback, we did not mention the fact that the pa_stream_write

has several modes to write at different relative positions in the buffer.

/+% Seek type for pa_stream_write(). =/
typedef enum pa_seek_mode

PA_SEEK_RELATIVE = 0,

/#*%< Seek relative to the write index. x*/

PASEEK_ABSOLUTE = 1,
/**%< Seek relative to the start of the buffer queue. x/

PASEEK_RELATIVE.ON_READ = 2,

/*x< Seek relative to the read index. x*/

PA_SEEK_RELATIVEEND = 3
/#*%< Seek relative to the current end of the buffer queue. x*/
} pa_seek_mode_t;

Figure 19: Extract from PulseAudio’s headers with the different types of writes

We usually use the relative mode. However, we need to use an absolute position
because we need to rewrite the buffer completely. Via a modified callback func-
tion called by the interface, the program is allowed to go to another timestamp
quickly. It is not currently implemented in the interface, but it will be for the
second defense.

4.2.8 MP3 and other formats playback

Due to high complexity of decompression, especially with the number of algo-
rithms involved, we decided to avoid doing decompression for the moment. This
led to the implementation of a fast audio decoder for compressed formats. We
might implement a solution for audio decoding by hand later.

21

To do this, we are using Gstreamer, a library from the Gobjects family (like
GTK) to decode audio. Indeed, gstreamer is specialized in media handling with
numerous plugins and capacities. We use currently these plugins:

1. filesrc: retrieves data from a file
2. decodebin: decodes the audio data
audioconvert: converts the audio data (PCM)

wavenc: encodes the raw data to wave style format file.

oo W

giostreamsink: fake sink to retrieve data from it

This library shares similarities with PulseAudio and GTK in its functioning.
One important note, usually, the output of a file conversion is another file.
However, we do not want to leave trash files. So, we used a fake sink to retrieve
data and then play it.

The data retrieved is a WAV file. So, it can be combined by the program with
the existing functions to play the audio.

The process can be a little slow. However, this was the best solution to build a
complete audio player.

22

4.2.9 Testing & Struggles

With PulseAudio came a lot of challenges and difficulties. The use of libraries
combined with multi-threading can make debugging complicated or impossible.
Adding on top of that the implementation of our interface with GTK, and you
have got hieroglyphs to decode. As a result, it led to a very isolated construction
of our audio back-end to ensure its stability with some tools for testing.

For instance, we have implemented a shell player. It allows us to easily test
many features such as the system of timestamps with latency, the parsing of
information from the file.

» src: main — Konsole

File - View Bookmarks Settings Help

Figure 20: An example of debugging session on shell (Manjaro, Konsole)

Of course, it would not be fun if it was not multi-threaded and built using
semaphores to ensure light CPU usage.

Finally, using the known tools such as GDB, Asan, Valgrind, we were able to
trace all the bugs we were able to produce. After all, debugging is like investi-
gating a murder knowing that you're the culprit.

4.3 Conclusion

Our current implementation is almost complete. It features the most common
properties that one could find on an audio player. It still has to be extended,
improved, polished with more features. For instance, we kill and then start
a new stream for each file. We will try to implement a dynamic streamer for
better performance.

Working so far with PulseAudio was a bit painful due to the lack of decent
examples and a lack of knowledge.

23

5 GUI: User Interface
5.1 Glade

A

Glade

Glade is a RAD tool to enable quick & easy development of user interfaces for
the GTK toolkit and the GNOME desktop environment.

The user interfaces designed in Glade are saved as XML, and by using the
GtkBuilder GTK object these can be loaded by applications dynamically as
needed.

For our project, we used this tool to design the following Interface. Glade
has many features that helps designing different dynamic interfaces. Since our
project is an audio player, we used most of the features like volume button
(slider), play button, pause button, progress bar(slider), signals to connect the
GTK to Glade object ...etc. The details of this interface will be given below.

H3ARTZ.STDIO

File Help '

HBARTZ.

TOTO

m

Choose the song you want to play

11 123.wav B
5 & YR

4 725

24

1
2
3
1
5

For more information about Glade and it’s documentations, click here:

https://glade.gnome.org/

-

5.2 GTK

GTK is a free and open-source cross-platform widget toolkit for creating graph-
ical user interfaces.

5.3 Components of the Interface
5.3.1 File chooser

The file chooser component of the Interface design allows users to pick any au-
dio file that they want to play. To make this work, GTK provides a function
called gtk_file_chooser_get_filename(GtkWidget *widget) that allows to
get files from a directory using the widget used in the interface design. To be
more precise, the code is as follows:

void on_choose_wav (GtkWidget *widget, gpointer userdata)
{
static uint8_-t init = O0;
gtk_player xplayer = userdata;
if (player—>filename)
free (player—>filename) ;
player—>filename = gtk_file_chooser_get_filename (
GTK_FILE.CHOOSER (widget)) ;
if (!player—>filename)
return;
int code = terminateStream (player—>player);
if (code >= 0 && player—>ui.ID)
g-source_remove (player—>ui.ID);

parseFile (player—>player, player—>filename);
changeTitle (player);

if (prepareStream (player—>player) =— —1)
on_quit (NULL, player);

it (linit)
init = 1;

setDefaultVolume (player) ;

25

https://glade.gnome.org/

player—>player—>utility —>current = 0;
on_play (player);

5.3.2 Play and Pause button

void on_play(gtk_player x*g)

}

if (g—>player—>pa_state != PAUSED && g—>player—>pa_state !=
READY)

return;
if (!g—>player—>pulseAudio—>stream)

return,;
GtkWidget ximage = gtk_image_new_from_file (”./GUI/callbacks/
icons/pause.png”);
gtk_button_set_image (GTKBUTTON(g—>ui.play_pause), image);
play (g—>player);
g—>ui.ID = g_timeout_add (100, slider, g);
return;

void on_pause(gtk_player xg)

{

if (g—>player—>pa_state != PLAYING)
l‘(—‘,l‘llr‘n;
GtkWidget *image = gtk_image_new_from_file(”./GUI/callbacks/
icons/play.png”);
gtk_button_set_image (GTKBUTTON(g—>ui.play_pause), image);
Pause (g—>player);
if (g—=>ui.ID)
g_source_remove (g—>ui.ID);
g—>ui.ID = 0;

return;

5.3.3 Progress Bar

As one guess from the name, the progress bar helps us to show the progress of
a playing audio. It gives information about the time or duration of the audio.
To implement this, there are two methods that we used. The methods are : -

e 1. GtkProgress Bar

e 2. GtkScale Button(slider)

GtkProgress Bar

The GtkProgress Bar is a widget which indicates progress visually. It shows the
progress of some process using percentages. For our project, we implemented
the GtkProgress Bar but for the sake of dynamics the interface, we used the

26

GtkScale Button(slider) which will be explained after to make it user friendly..

—

Progress Bar

GtkScale Button(slider)

The GtkScale Button is a button which belongs to the GtkScale class that
is a slider widget for selecting a value from a range. This allows users to
click and go at any point of the scale. For our project, we implemented the
GtkScale Button(slider) using another powerful tool from GTK which is the
gint g_timeout_add (guint32 interval, GtkFunction function, gpointer
data); function. This function is helpful to execute the function parameter
within a time interval of the interval parameter in the function.

Horizontal and Vertical
Scales

The implementation is as follows: -

1 int slider (void *userdata)

-

3 gtk_player =xplayer = userdata;

pa_player xpulseAudio = player—>player;

5 // Total duration computation: nb bytes in file / bitrate

6 if (player—player—>pa_state >= DRAINED)

8 gdouble max = gtk_adjustment_get_upper (player—>ui.adjustment);

9 // 100% completion for interruption

10 gtk_adjustment_set_value (player—>ui.adjustment , max);

11 // disables callback

12 g-source_remove (player—>ui.ID);

13 GtkWidget ximage = gtk_image_new_from_file(”./GUI/callbacks/
icons/play.png”);

14 gtk_button_set_-image (GTKBUTTON(player—>ui.play_pause), image)

15 return FALSE;

16 }

17 double duration = (double)pulseAudio—>player—>info-—>data—>
data_bytes /

18 (double)pulseAudio—>player—>info-—>fmt—>bitrate;
19 gtk_adjustment_set_upper (player—>ui.adjustment,duration);
20 // updates latency from pulseAudio

21 updateLatency (pulseAudio) ;

27

// computation zone

double timing = pulseAudio—>player—>time;

// converts to microseconds

timing x= power;

// removes latency

double wLatency = timing — (double)«(pulseAudio—>pulseAudio—>

latency) ;
//ratio = ((wLatency / power)* 100) / duration;
double current = wLatency/power;

player—>player—>utility —>current = current;

// update the progress bar

gtk_adjustment_set_value (player—>ui.adjustment, current);
gtk_scale_set_draw_value (player—>ui.slider , TRUE);

return TRUE;

}

For more information about the documentations, click here:

e https://developer.gnome.org/gtk3/stable/GtkProgressBar.html
e https://developer.gnome.org/gtk3/stable/GtkScale.html

e https://developer.gnome.org/gtk3/stable/GtkAdjustment .html

5.3.4 Volume Button

In this section, we implemented a button that controls the volume of an au-
dio with the help of GtkVolume Button and the information given from the
pulseaudio which contains the volume. Since the GtkVolume button functions
as a slider, we had to modify the information of the volume from the pulseaudio
so as to get the value of the scale.

)

28

https://developer.gnome.org/gtk3/stable/GtkProgressBar.html
https://developer.gnome.org/gtk3/stable/GtkScale.html
https://developer.gnome.org/gtk3/stable/GtkAdjustment.html

The implementation is as follows: -

i1 void cvolume (GtkWidget *widget __attribute__((unused)), gpointer

userdata)

- {

3 gtk_playerx player = userdata;

A if (player—>player—>pa_state >= DRAINED)

5 return,;

6 gdouble value = gtk_scale_button_get_value (GTK.SCALE BUTTON
player—>ui.volume));

7 player—>player—>info-—>volume = value;

8 setVolume (player—>player) ;

9 return;

10 }

5.3.5 Name of artists

As the user choose the song to play in the designed interface, a component called
GtkLabel will display the name of the artist if it exists, otherwise it will just
display ” Unknown”.

The implementation is as follows:

i void changeTitle(gpointer userdata)

- {

3 gtk_player xplayer = userdata;

| fileInfo =xinfo;

5 info = getFilelInfo (player—>player—>player—>info-—>list);

6 gtk_label_set_text (player—>name, info-—>artists 7 info->artists
”Unknown”) ;

7 free (info);

!

For more information about the documentations, click here:

https://developer.gnome.org/gtk3/stable/GtkLabel.html

5.4 Conclusion

To conclude, the objectives for this first defense about the interface are reached.
Our team is working on the playlist implementation and a better looking inter-
face for the next defense.

29

https://developer.gnome.org/gtk3/stable/GtkLabel.html

6 Website

With the project, we must provide a functional website to showcase the evolution
and the features. Its address is:

https://areas0.github.io/h3rtz/

H3RTZ stdio

The project

The context
This

HBARTZ.STDXO

A screenshot of our home page

6.1 Design

Our website uses a template created for the S2 project by Jean”. With some
improvements plus some editing, the website is already functional. It features:
— A classic homepage

— A download page with some documents

— A task & issues page

— A page for the credits

— An “about us” page

Our website fits all the requirements for the last presentation and offers a di-
verse and rich experience with the latest improvements done for this defense.

The homepage features a small news section, a menu with some additional
and useful links.

The download page is a place for all documents, executable made during the
semester.

The task and issues page offer some details concerning how we have progressed
overtime on the project. It will include some information on the bugs we have
fixed.

Onttps://areas0.github.io/website/

30

https://areas0.github.io/h3rtz/
https://areas0.github.io/website/

The “about us” page includes a description of the group and all group members.

The main framework used is Bootstrap'. It offers dynamic layering to adapt
the website to all sizes of screens.

6.2 Hosting

The website is hosted on GitHub Pages?. It offers reliable and easy-to-use service
to host a simple website that requires no dynamic changes. You have probably
guessed it, but the website must be in a GitHub repository to be hosted and
updated. Updates are done by following the commits on the repository’s master
branch.

Ihttps://getbootstrap.com/
%https://pages.github.com/

31

https://getbootstrap.com/
https://pages.github.com/

7 Assignment tabular

We will assign a letter to every member to make our schedule more readable

1. KB : Kevin-Brian

2. J: Jean

3. L: Lam

4. Y : Yabs
Tasks KB/ J|L|Y
Multi-threading | X | X | X | X
Audio formats X | X
GUI X | X
Website X |+

Cross : (x) Person in charge and Plus : (+) Assistant.
As you can see multi-threading will involve everybody.

32

8 Progression

Now, we need to consider how we are going to handle our time based on the

three main deadlines :

1. The 1% presentation (March 29" - 224 April, 2021)

2. The 2" presentation (3'4 - 7th May, 2021)

3. The 3" presentation (14" - 18" June, 2021)

We made a tabular to make it easy to read. The 1st tabular bellow is the
progression goals that we set from the beginning of the project :

Tasks st | ond | 3rd
Multi-threading 30 | 70 | 100
Audio encode - WAV | 30 | 100 | 100
Audio decode - WAV | 80 | 100 | 100
Audio encode - MP3 | 0 | 60 | 100
Audio decode - MP3 | 30 | 80 | 100
User Interface 40 | 70 | 100
Conversion Support 0 | 40 | 100
Website 100 | 100 | 100
And this is our actual progression on the project :
Tasks st | ond | 3rd
Multi-threading 75 | 90 | 100
Audio encode - WAV 70 | 100 | 100
Audio decode - WAV 80 | 100 | 100
Audio encode - MP3 0 | 60 | 100
Audio decode - MP3 (GST) | 75 | 90 | 100
User Interface 50 | 70 | 100
Conversion Support 0 | 40 | 100
Website 100 | 100 | 100

33

9 Conclusion

Our team has achieved good progress for this first defense. With an already
functional audio player and its interface, the project has already passed some
major milestones.

For the next defense, there will be a new set of skills involved with the be-
ginning of algorithmic work for the encoding of the MP3 format. We will also
continue improving the interface, the audio back-end to provide a more com-
plete set of features.

Finally, except for the changes on some tasks (see the book of specification), we
are currently on schedule and confident on the fact that we will be able to finish

our tasks in time.

Thank you.

34

	Introduction
	WAV decoding
	Parsing the headers: global process
	Parsing the RIFF
	Parsing the DATA block
	Parsing the FMT
	Parsing the FACT block
	Parsing the LIST block
	Conclusion

	WAV encoding
	Writing the raw file
	Writing the new header
	Software used
	Conclusion

	Audio player: PulseAudio
	Principle of implementation
	Implementation
	Structures
	Initialization
	Writing the audio data
	Terminating & draining a stream
	Timestamps
	Volume
	Forwarding/Rewinding
	MP3 and other formats playback
	Testing & Struggles

	Conclusion

	GUI: User Interface
	Glade
	GTK
	Components of the Interface
	File chooser
	Play and Pause button
	Progress Bar
	Volume Button
	Name of artists

	Conclusion

	Website
	Design
	Hosting

	Assignment tabular
	Progression
	Conclusion

