
Bartendu

Project report

Jean Bou Raad
Lou Lefebvre

Vincent Thirouin
Emeline Tichit

EPITA 2024

https://areas0.github.io/website/

https://areas0.github.io/website/

Bartendu Project report 27/05/2020

Contents

Introduction 4

1 Book of specifications follow-up 5

2 Jean’s Achievements 7
2.1 The website . 7

2.1.1 Key steps of creation & features . 7
2.1.2 Latest updates . 8
2.1.3 Hosting and technical aspects . 9
2.1.4 Conclusion . 9

2.2 Music . 10
2.2.1 Music Creation . 10
2.2.2 In Unity: Audio Management . 11
2.2.3 General conclusion . 14

2.3 An additional feature: Discord Rich Presence 15
2.3.1 Implementation . 15
2.3.2 Issues . 17
2.3.3 Conclusion . 17

2.4 Level Design & Level implementation . 18
2.4.1 Level 01: a simple kitchen with its restaurant 18
2.4.2 The boat . 20
2.4.3 The classroom . 22

2.5 Story Writing . 24
2.6 Experience in the group . 24

3 Vincent’s Achievements 25
3.1 Introduction . 25
3.2 Base of the game and multiplayer . 26

3.2.1 Base of the game: Player controller 26
3.2.2 Multiplayer: Spawning objects on the server 27
3.2.3 Base of the game: Core mechanics 27

3.3 Singleplayer . 30
3.3.1 Base of the game: Food properties and Food recipes 30
3.3.2 Singleplayer: rewriting scripts and recreating prefabs 30
3.3.3 Singleplayer: Cinematics . 31
3.3.4 Singleplayer: Scripting the gameplay 33
3.3.5 Saving data . 34

3.4 AI and final touches . 35
3.4.1 AI: Basic actions . 35
3.4.2 AI: Brain . 35
3.4.3 Final touches: Customization and bug fixes 36

3.5 UI work . 36
3.6 Small tasks . 37
3.7 Conclusion . 37

2

4 Lou’s Achievements 38
4.1 3D modeling : Introduction . 38
4.2 Blender . 38
4.3 First Assets . 39
4.4 Ragdoll to represent the customers . 40
4.5 Other Assets . 41
4.6 Assets specially made for some levels . 42
4.7 The boat . 43
4.8 Scan and players’ characters . 44
4.9 Last assets and improvements . 45
4.10 Conclusion on 3D modeling . 46
4.11 My experience in this project . 46

5 Emeline’s Achievements 47
5.1 Particle effects . 47
5.2 Sea effect . 48
5.3 3D animations . 48

5.3.1 Customers . 48
5.3.2 Mr.Insatiable . 48
5.3.3 Player Characters . 48
5.3.4 The Teacher . 49
5.3.5 Implementation . 49

5.4 Tutorial and sound effects . 50
5.5 Personal experience . 50

Conclusion 51

Bartendu Project report 27/05/2020

Introduction

This report is the final one that will be handed in alongside our game Bartendu.

Bartendu is a cooking bar simulation game where players cook and make drinks to satisfy
customers in a restaurant. The goal of the game is to get as many points as possible in
a limited amount of time. In order to earn points, players have to successfully meet the
needs of their customers. As the overall gameplay was already explained in the book of
specifications and has not changed since, we will not explain it in this final report.

Previously, a list of tasks was assigned to each group member. The aim of this report
is to show how far each student has come, and present our achievements as well as our
impressions on the results and this whole journey.

4

Bartendu Project report 27/05/2020

1 Book of specifications follow-up

The following is the tasks that were originally assigned to each student at the beginning
of the project. Some of these tasks were picked up by another group member than the
one who was supposed to complete them originally. We will explain later the shifts that
happened.

Task Main Substitute
UI graphics Lou Emeline
UI implementation Vincent Lou
Character actions Vincent Jean
Multiplayer Vincent Lou
AI Vincent Jean
Tutorial Emeline Vincent
Level design Emeline Jean
Level implementation Jean/Vincent -
Object implementation Emeline Vincent
Particle Effects Emeline Vincent
3D modeling Lou Emeline
3D animation Emeline Lou
Music Jean Lou
Sound Effects Emeline Jean
Writing (Storyline) Jean Emeline
Website Jean Emeline
LATEX Emeline -

Here is the update on all the tasks.

• UI graphics: The main student changed, Vincent took charge of it. Most of the
art has been done.

• UI implementation: All the UI that were created were implemented.

• Character actions and movements: Already implemented for the first defense.
They were fixed over the course of the semester.

• Multiplayer: Functional.

• AI: Implemented but not polished.

• Tutorial: Not done.

• Level design: Done, 3 levels designed.

• Level implementation: Done, 3 levels implemented.

• Object implementation: The main student changed, Vincent took charge of it.
All objects were implemented.

• Particle Effects: Done but some of them were not implemented.

• 3D modeling: Done and implemented.

• 3D animation: Done and mostly implemented.

5

Bartendu Project report 27/05/2020

• Music: Done. Two partitions missing but as compensation a music manager was
implemented into the project.

• Sound Effects: Not done.

• Writing (Story-line): Done.

• Website: Up and running.

• LATEX: Done.

6

Bartendu Project report 27/05/2020

2 Jean’s Achievements

2.1 The website

During this semester, I developed a website. It is an essential tool for our project because
it allows the user to discover the project and the game. It must be a great experience.
Therefore, I worked a lot to create a functional and beautiful website.

2.1.1 Key steps of creation & features

The process of creating our website has been quite a great journey.

The first step was choosing between using a template or going from scratch. The second
was the option chosen because it offered an occasion to deepen my knowledge of CSS and
HTML. Indeed, before the project, I already had some experience with website building
for personal projects and the TPE for the BAC. Hence, this project was a perfect occasion
to learn even more about website building.

However, starting from scratch meant choosing at least some fundamental tools to work
with: a skeleton. This was Bootstrap’s role. Bootstrap offers some premade layouts and
some tools to customize the layout of a website. But it also allows the developer to take
liberties on the theme.

The design of our website was decided by the whole group. We wanted something simple
and standard: a black theme with little contrast on the pages to keep everyone’s eyes
comfortable.

With those ideas in mind, I built a website from scratch with little iterations on it after
the first release for the first defense.

The website features many pages:
— A classic homepage
— A download page with some documents
— A features page featuring some videos of the game (created for the last defense)
— A task issues page (reworked for the last defense)
— A page for the credits
— An “about us” page (reworked for the last defense)

Our website fits all the requirements for the last presentation and offers a diverse and
rich experience with the latest improvements done for this defense.

The homepage features a small news section, a menu with some additional and useful
links, and a small Easter-egg capable of changing the theme on it: it involved writing a
little bit of JavaScript which I found would be interesting.

The download page is a place for all documents, executables, music appendixes made
during the semester.

The feature page is a showcasing tool for our game with small videos and a gallery.

7

Bartendu Project report 27/05/2020

The task and issues page offer some details concerning how we have progressed over-
time on the project. It includes some information on the bugs we have fixed.

The “about us” page includes a description of the group and all group members.

2.1.2 Latest updates

Some updates have been done to improve the website for this defense and some challenges
arose.

The biggest difficulty being the creation of a layout that could provide enough infor-
mation without becoming overloaded. This explains some reworks for the last defense.
For example, the “about us” page, for the two first defenses, was filled with text as you
can see here:

Figure 1: Old presentation layout (partial screenshot)

Figure 2: New layout with a dynamic carousel

8

Bartendu Project report 27/05/2020

The second one seems way more satisfying with less text on the page, a carousel division
from Bootstrap framework to make one slide per group member. Overall, it is clearer and
easier to read. But it raised many difficulties because the carousel division in Bootstrap
is made to show images, not text-only content. So, I had to find a way to manipulate
the CSS behind the scenes to adapt the existing division to our needs. This was possible
thanks to some information found on the internet and Bootstrap’s documentation.

We also introduced a features page. It has a simple layout featuring first a small gallery
(carousel division of Bootstrap) with some screenshots from the game. It also displays
some videos showcasing the game and giving some information on the installation.

Finally, we added an issues section in our “task and schedule” page with some details
on them.

2.1.3 Hosting and technical aspects

The website is hosted on GitHub Pages1. It offers reliable and easy-to-use service to host
a simple website that requires no dynamic changes. You have probably guessed it, but
the website must be in a GitHub repository to be hosted and updated. Updates are done
by following the commits on the repository’s master branch. So, even though I was the
only one working on the website, it has been quite a new thing to force myself to commit
regularly, using branches, discovering pull requests with the conflict that might come with
them. It is not a lot, but no less than 96 commits have been made, 4 additional branches
have been created iteratively, 2 formal pull requests have been introduced successfully on
our main branch. Finally, you can find on the repository a snapshot of the website for
each defense (and even more).

2.1.4 Conclusion

To conclude, the journey to create this website has not been easy, but it fits all the
requirements that we had in mind while writing our book of specifications. The group
feels like it has charm with its simple but complete design. Thanks to GitHub pages, it
will stay online for quite a long time to showcase our game. On a personal note, I have
gotten better at creating a website almost from scratch by only using a framework and
its documentation during this project.

1https://pages.github.com/

9

https://pages.github.com/

Bartendu Project report 27/05/2020

2.2 Music

Creating a sound environment for a game is a huge and complicated task. It requires
some work on various parts of the project. From development to music sheet creation, it
needs a guiding principle to keep the intention behind the music written and the output
in-game. So, in this part, I will explain the guiding principles I have chosen along with
the explanations on how it has been done.

2.2.1 Music Creation

“Music creation” or “composing” seem like pretty and nice words. But they bear with
them a huge responsibility for the one creating the music: making it sound good for most
people while keeping its freedom of creation. It might be a very philosophical approach
to music creation, but it was in my mind during all this semester. Hence, it explains the
time spent on this task.

As a reminder, you can find all the sheets, audio samples mentioned in this text on
our website:1

Main menu theme
For the main menu, we have chosen a plain kind of nostalgic style inspired by the Life
is Strange main menu soundtrack2. Then an acoustic guitar was mandatory. The piano
was also chosen. Thanks to my experience as pianists, I was easily able to write sheets
for this instrument. With the nostalgic approach, it was clear that tempo should be slow
and a minor scale. But an only nostalgic approach would have been too sad for the game
that Bartendu aims to be, so I brought some light to the theme at the end by going on
a major scale and with a more rhythmic approach. As for all games, the track is a loop
that never ends until the player does something else.

First level: main and rush themes
For the in-game music, it was obvious that we had to write something dynamic and swing-
ing. To do that, we have chosen only piano instrumentation, which offers great flexibility.
The main loop has a fast tempo (we would call it in music Allegro). With that in mind,
offbeat was also used to create some tension for players. For the melodic approach, we did
not have any major source of inspiration except for a small part inspired by the Dialga
& Palkia battle theme from Pokémon Diamond Pearl Platinum3.

For the rush loop of this theme, we wanted to reuse some parts from the previous theme
while also creating more tension. Hence, the tempo is going a little faster in some parts.

1https://areas0.github.io/website/download.html
2https://www.youtube.com/watch?v=d9ENy1v3Dyg
3https://www.youtube.com/watch?v=I_57ptO3TKc

10

https://areas0.github.io/website/download.html
https://www.youtube.com/watch?v=d9ENy1v3Dyg
https://www.youtube.com/watch?v=I_57ptO3TKc

Bartendu Project report 27/05/2020

Second Level: Boat music
A stage on a boat is a special location to cook. Hence, I wanted the music to reflect this
special situation.

The melodic line has been chosen to fit with the pirate theme because we also have a
story mode level with pirates in it. The inspiration mainly came from a very known piece
of music of the film Pirates of the Caribbean12. It is very rhythmic with an ostinato on
part for the left hand.

A combination of triplets with regular quavers makes the listener unsettled. The fast
tempo combined with these elements makes the music sound good. The result is satisfy-
ing. The structure is great because It eases the work for the rush part. Indeed, with such
a melodic line, it was easy to rework and integrate it differently in another sheet.

The rush sheet keeps all the elements of the previous theme while exaggerating some
aspects. The rhythmic aspect is intensified because the player has no time to breathe
during a rush period. There is also more counterpoint integrated in the music sheet at
the beginning. But I have decided to introduce some contrast with a slowdown at the
middle and at the end with a reference to a very famous theme of Zelda3.

2.2.2 In Unity: Audio Management

Creating a script to handle music correctly was mandatory to make a good-sounding game.

It involved some technical skills and some work on various parts of the project.

Features & Guidelines
The team wanted a sound system that could easily adapt to any kind of situation. That
meant being able to make it play music when there is or even turn it off for the lite version
while keeping some features of it that are useful for sound effects.

I identified two major parts to make this system:
– Volume Management is the script in charge of handling volume sliders across scenes,
getting those values, and handing them over to the Music Management. This one is de-
pendent from the music management to retrieve those values in a new scene.
– Music Management is the script in charge of playing music and make transitions between
tracks. This script is dependent on audio management to setup correctly the volume of
tracks. It also interacts with some of the most important scripts of the game (e.g. Game
Manager).

Two guidelines guided the creation of those scripts: stability adaptability. The first
one means being able to run the script in any situation, any scene. Adaptability means
that I added many parameters to adapt the script to the music but also to the game itself.
These explain some choices made and explained in the second part (implementation).

1https://en.wikipedia.org/wiki/Pirates_of_the_Caribbean_(film_series)
2https://www.youtube.com/watch?v=27mB8verLK8
3https://www.youtube.com/watch?v=cGufy1PAeTU

11

https://en.wikipedia.org/wiki/Pirates_of_the_Caribbean_(film_series)
https://www.youtube.com/watch?v=27mB8verLK8
https://www.youtube.com/watch?v=cGufy1PAeTU

Bartendu Project report 27/05/2020

Implementation
Before going into the details of the how, we must remind you that the sound value of any
track in Unity is a float between 0 and 1. Also, all the scripts mentioned are MonoBe-
haviors scripts1.

A) Audio Management

With the second defense coming up, Vincent reworked the UI of Bartendu to integrate
essential features and settings. In those settings, there were three volume sliders:

1) a general volume slider
2) an audio effect volume slider
3) a music volume slider

They follow a classic linear relation: the general volume is what you could call a master
volume for the game. All sound cannot go above this limit. The music slider then has a
value between 0 and 1 (float) that represents a percentage of the general volume’s value.
So, behind the scenes, there is another value: the real volume of the track. Once calcu-
lated, it must be kept in memory. Therefore, communicated to the music management
which stores all those values.

Why is it stored in Music Management? Well, as you can imagine, in a game, sliders
are not everywhere but music is. The Volume Management was useless in some parts
of the game without any settings. Hence, in opposition to Music Management, Volume
Management can be destroyed (because it is a game object) while transitioning from scene
to scene. Music Management acts as a memory save of the current state of sliders. Once
destroyed, any new Volume Management can retrieve the old values.

This functioning eased the process of the creation of this script. Indeed, if the game
object is destroyed and spawns when we need it, we can beforehand attach predefined
sliders in serialized fields2 in the scenes when needed. That would have been more com-
plicated if the script was kept across scenes. Indeed, that would have meant detecting the
sliders, guessing which one is the general volume slider, which one is the music volume
slider, etc. . .

Finally, the script works as follows:

1. The player arrives in a scene with sliders. A volume management object is initialized.
It gets the current and only Music Management. Then It attaches the values from
the attributes sliderValue and generalVolume to their sliders attached in advance to
the object.

2. If the player interacts with the slider, via an OnValueChange event3, it calls a func-
tion in charge of updating music management’s attributes to reflect those changes.
It follows the formula introduced above.

3. If the player leaves the scene, the object is destroyed, but the settings remain intact
because Music Management stores these values and is not destroyed.

1https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
2https://docs.unity3d.com/ScriptReference/SerializeField.html
3https://docs.unity3d.com/2018.2/Documentation/ScriptReference/UI.InputField.

OnChangeEvent.html

12

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/SerializeField.html
https://docs.unity3d.com/2018.2/Documentation/ScriptReference/UI.InputField.OnChangeEvent.html
https://docs.unity3d.com/2018.2/Documentation/ScriptReference/UI.InputField.OnChangeEvent.html

Bartendu Project report 27/05/2020

To conclude, the implementation was pretty smooth because Vincent introduced to me
all the technical aspects of OnChangeEvents and Sliders1.

The script is efficient and provides most of the features that were missing to the game.

B) Music Management

Music Management is Audio Management’s heart. Hence, it was the first script im-
plemented after the first defense.

It was implemented feature by feature from the most basic one to some trickier.

Starting with playing an audio file and switching to another track. This was imple-
mented successfully thanks to Unity’s Audio Source2 objects making the process easier.
By putting an audio file in our assets folder, I was able to attach it to an Audio Source ob-
ject and play music. Hence, Music Management works with those objects and manipulates
them to play new Audio Sources. This was done by editing the Audio Source attached
to the object holding the Music Management. The only difficulty being to transfer some
properties such as the boolean telling if the track is muted or not and transferring its
volume. There was also an additional case to handle: if we did not want to play a new
track. This was solved by attaching a null audiosource to the music management.

Secondly, an essential feature: transitions. For us, good sounding means no brutality
while switching between pieces of music. Hence, it required a function to handle the tran-
sition. This function was quite complicated to conceive for a beginner on Unity because
it was a time-dependent function. It must update volume every few milliseconds and con-
tinue running. By looking at Vincent’s way of handling the timer in-game, I discovered
the coroutines. They do exactly what has been described before. To make it work, it
requires partial returns, technically speaking: yield returns. These returns hold a timer
for unity that pauses the function via a WaitForSeconds3 object.

The transition works with a few parameters such as the total time of the transition
and the mode (decreasing volume or increasing). The first one follows the first guideline:
adaptability. Different pieces of music require different timings to produce good tran-
sitions. Hence, this parameter was created. The second one is important because the
relation and the iteration are not the same to decrease or increase the volume. Most of
the technical aspects being ready, the only remaining difficulty was to determine a good
mathematical model for transitions. The formulas are linear. And, as a continuity of
Volume Management, the volume cannot go higher than the value defined by the sliders.
Hence the following formula:

totalSecs− seconds

totalSecs
· maxV olume

(maxVolume being the value defined by the users via the sliders)

1https://docs.unity3d.com/Packages/com.unity.ugui\spacefactor\@m{}1.0/manual/

script-Slider.html
2https://docs.unity3d.com/ScriptReference/AudioSource.html
3https://docs.unity3d.com/ScriptReference/WaitForSeconds.html

13

https://docs.unity3d.com/Packages/com.unity.ugui\spacefactor \@m {}1.0/manual/script-Slider.html
https://docs.unity3d.com/Packages/com.unity.ugui\spacefactor \@m {}1.0/manual/script-Slider.html
https://docs.unity3d.com/ScriptReference/AudioSource.html
https://docs.unity3d.com/ScriptReference/WaitForSeconds.html

Bartendu Project report 27/05/2020

Last feature but not least, preparing the lite version of our game by adapting all our
functions to make them safe from the missing tracks due to possible NullReferenceExcep-
tion1. I introduced a boolean to determine if the game is built in a way that does not
include music files (what a shame). It is used in other scripts to avoid useless calls to
music management such as the gamemanager which updates the music.

Finally, I used the DontDestroyOnLoad2 function to assure continuity across scenes of
music.

2.2.3 General conclusion

Overall, music was one of the most prominent tasks I had to work on during this semester.
I have learned a lot from making music sheets but also by creating the system that would
play them. The only regret being maybe a lack of diversity in the music made due to a
paucity of instruments on my music rendering software and the quality of this software
(they cost a lot of money and hacking is bad :)).

1https://docs.microsoft.com/fr-fr/dotnet/api/system.nullreferenceexception?view=

netcore-3.1
2https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

14

https://docs.microsoft.com/fr-fr/dotnet/api/system.nullreferenceexception?view=netcore-3.1
https://docs.microsoft.com/fr-fr/dotnet/api/system.nullreferenceexception?view=netcore-3.1
https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

Bartendu Project report 27/05/2020

2.3 An additional feature: Discord Rich Presence

For a game that aims to reach some standards of the gaming industry, Discord Rich Pres-
ence has been chosen as an additional feature to add to our game.

As you may know with the current context, Discord is a communication application for
gamers and more. . . So, bringing to players the possibility to show that they are playing
the game was considered by the team as a nice add-on.

2.3.1 Implementation

The feature was not planned on our book of specifications. However, this was not a prob-
lem because it was not a major feature that would require tons of development.

Indeed, Discord Rich Presence is easily integrated in Unity games because it is included
in Discord SDK. Discord SDK is a very complete development kit which allows developers
to communicate with the discord app for various tasks.

After downloading the development kit, I was already able to integrate it to our gamefiles.
With the documentation and the knowledge acquired by making the music management,
I was easily able to create a new script: Status Management.

It handles the connection to Discord and the Rich Presence by preserving it across scenes
with the DontDestroyOnLoad function of Unity.

Now with the game being able to communicate with Discord, I had to tell Discord what
to show. Generally speaking, a game is an activity. It is the same with Discord: we can
tell discord that a player is playing our game by sending activities. This data is created
and formatted by the game to fit our needs.

However, I had to think about the way to create generic formats for our game.

I have come up with three main activities in our game:
– Being in the main menu
– Being in a lobby
– Playing a game including intro and outro scenes

Each activity has its own function. It allows us to define some presets and add their
customizable fields:
– A title: e.g. “In a game”
– A field for details: e.g. “Playing on Level 1” or “Waiting for players 1/4”
– A timestamp: if there are 5 minutes left on the timer of your game it will show 5:00
remaining
– An image: we chose to show only a default one so it will be set to a value by default

15

Bartendu Project report 27/05/2020

Figure 3: Standard template of an activity object of Discord’s SDK

After creating these functions in a script, most of the job was done. The only task
remaining being the implementation of calls to the script in already existing scripts such
as GameManagers, or even LobbyManagers. I had to deal again with some PhotonView
and their RPCs (remote procedure call) to activate some changes remotely. For example,
the master client (the one in charge of computing timers, scores, and orders) was the only
client knowing whether the game was lost or won. Hence, it is the only one able to tell
Discord in which scene the other clients would end up after the game and update correctly
the activity.

The activities are updated thanks to a method Discord.RunCallbacks1 in the Update
function. And to avoid errors, I have created a safe structure of try and catch in case
Discord failed to destroy the gameobject and disconnect it from Discord if it is closed
while the player is in-game. After that, the implementation was complete and functional:

Figure 4: Activities displayed by Discord
when playing Bartendu

1https://discord.com/developers/docs/game-sdk/discord#runcallbacks

16

https://discord.com/developers/docs/game-sdk/discord#runcallbacks

Bartendu Project report 27/05/2020

2.3.2 Issues

Even though it seemed easy, the implementation created a few difficulties.

Firstly, an interesting one: I was not able to setup correctly timers in activities due
to my lack of knowledge on the way computers calculate time. Indeed, right now when
I am writing those words, computers consider that we are on the timestamp 1589138931
(It was 10/05/2020 21:28). Those are Unix Epoch seconds format to calculate time. It
represents the number of seconds elapsed since 01/01/1970. It is used by Discord in their
activities to calculate the beginning and the end of an activity. And without any real
explanation in the documentation, I had some trouble with that. That said, it is easy to
calculate time with this format thanks to System.DataTime1 class of C# and a simple
calculation you have below:

Figure 5: Code to calculate current timestamp in Epoch format

There was another issue with my implementation of Rich Presence. Unity and the game
were crashing if the player did not have Discord opened on their laptop. This bug was
created by a single line of code at the initialization of Discord object.

The createflag is a parameter used to identify the type of Discord client (Stable, Beta,
Canary) the player has. Hence, it requires discord to be opened and, if not, generated a
crash in Unity because Discord was missing. The documentation not stating clearly the
implication of using such flags, I had a lot of trouble to find the cause and the fix. How-
ever, after much trouble, I changed the parameter to one that does not require Discord
at all. And now the script runs flawlessly.

2.3.3 Conclusion

This feature, which was not planned at all, is today working perfectly and fulfills its
objectives. Moreover, it helped me learn that some bugs cannot be debugged in a classic
way and that documentation may provide the solution if I search properly. The feature
looks great on a profile and brings a more professional and polished aspect to the game.

1https://docs.microsoft.com/fr-fr/dotnet/api/system.datetime?view=netcore-3.1

17

https://docs.microsoft.com/fr-fr/dotnet/api/system.datetime?view=netcore-3.1

Bartendu Project report 27/05/2020

2.4 Level Design & Level implementation

In this game, stages are a major task because it is the heart of our gameplay. It showcases
every piece of work done behind the scenes from the little assets such as the plate to the
biggest one: the boat. Also, it is supposed to provide a good gaming experience to the
players. That is clear: if level design is bad, a player will stop playing the game. Hence, it
requires loads of work to create the concept behind the levels, create sketches, implement
them, etc.. . .

2.4.1 Level 01: a simple kitchen with its restaurant

This first level was implemented for the first defense with the first assets available in-game
thanks to the work done by Lou and Vincent. However, it went under many reworks to
add the remaining assets, rework layout to adjust it to the scale and solve some perspective
problems. Below you have the result:

Figure 6: Result for Kitchen Basics stage

Conception:
A cooking game without its basic stage composed of a simple kitchen and its restaurant
would be a bad game. Therefore, we decided that It would be the first level created and
implemented.

As you can see on the sketches below, the scale was way smaller compared to the re-
sult. Each square was supposed to be a 1m2 object. This is explained by the fact that at
the time of conception, we had no idea of what the game would look like. The same goes
for the scale. We also did not have any idea of how many tools we would be needing to
make the bar. It was decided late in the project. Basically, for this step, I had to deal
with many variables that did not have a value.

18

Bartendu Project report 27/05/2020

Figure 7: A screenshot of the old kitchen level in Unity scene view

These difficulties aside, the layout is stripped down with only the necessary. In the
kitchen-bar, there are only the necessary tools and no space is supposed to be useless.
The level is also symmetric because we wanted to ease the movement on this level. To
conclude, the player has every tool he needs to get started with the game and discover
the gameplay without any additional difficulty from the environment.

Implementation:
The first implementation of this level following the sketches was not good at all because
It was too small. Also, due to my lack of experience, the level was not meeting the quality
standards wanted by the team.

Hence, the first rework was an opportunity to make the level bigger and add some useful
space for players. Thanks to the addition of a new tool: ProGrids1, I was able to meet
the quality standards decided by the team. I also created the solo version of this level.
Indeed, all assets are handled differently (without Photon) in this mode. This implied
that assets would be a bit different and this could not be solved by a copy-paste of the
level to make the offline version. Also, the layout has been slightly modified to adapt to
scriptwriting constraints. But the bar items were still missing.

So, the last rework for the last defense was mandatory. Adding the bar with its items.
It did not go as planned because I did not anticipate this number of assets for a very
limited space in the solo version of this level. So, I had to rework a little this space on the
solo version. For the multiplayer version, there was enough space to add all the required
items as you have seen on the result above. Also, I reworked the layout a little bit to
adapt to the camera angle used. Indeed, the players could not see the cutting progress bar
correctly with the angle chosen. Hence, I exchanged the dispensers with the cooking tools.

1https://www.procore3d.com/progrids/

19

https://www.procore3d.com/progrids/

Bartendu Project report 27/05/2020

Figure 8: Changes made in the Kitchen Basics stage

2.4.2 The boat

A restaurant on a boat? The idea seems crazy, right? Well, Bartendu is a game and we
did it. The creation of this level raised many technical and interesting challenges behind
the scenes. For example, Lou had to create the biggest model for the game. Vincent and
I had to work on how to make the player navigate between different levels on the boat.
As usual, it went through the 2 major creations steps.

Conception:
The implementation, except for the scale, is faithful to the sketches. Basically, the stage
has 3 levels: the hold, the deck, and the top. The hold holds the kitchen part. The deck
acts as the restaurant part and the top as a bar. There is also a pontoon to link the deck
to the port. Basically, the players will have to navigate between all those parts which
raises a little bit the difficulty compared to the first level.

Implementation:
With the use of a model (the boat), the implementation changed a little bit because I had
less freedom on the space I would want to use. I had also many constraints such as the
door leading to the hold being static, or even I was forced to leave space for some stairs to
go to the top of the boat. Except that, this level was done more easily than the previous
ones because everything behind the scenes was ready (all assets). The notable feature of
this level being the teleportation of players using the door to go to the hold. There was
also additional work in the artistic team to get a sea effect (see Emeline’s part) and some
work on lighting. We chose a night lighting for this level because we thought that there
was some interesting work around lighting at that time of the day. I used an asset pack
to modify the skybox1. It allowed us to change the overall lighting of the level and make
the level look good. This is the final result:

1https://assetstore.unity.com/packages/2d/textures-materials/sky/

10-skyboxes-pack-day-night-32236

20

https://assetstore.unity.com/packages/2d/textures-materials/sky/10-skyboxes-pack-day-night-32236
https://assetstore.unity.com/packages/2d/textures-materials/sky/10-skyboxes-pack-day-night-32236

Bartendu Project report 27/05/2020

Figure 9: Boat stage, final result (top and bar)

Figure 10: Boat final result: hold’s kitchen

21

Bartendu Project report 27/05/2020

2.4.3 The classroom

The classroom is, in my opinion, the funniest level I had to work on during the semester.
It runs in an environment everyone knows: a classroom with its teachers. The players hold
the role of being the students. They are cooking during a game while the teacher is writing
at the board. The students must not get caught cooking by the teacher. Occasionally, he
looks at them after writing for a while on the board.

Conception:
This was the first idea created before we even handed in our book of specifications. Hence,
the sketches were incomplete or even invalid when I had to implement this level. They
were useless. We only kept the concept.

Implementation:
The implementation of this level was fast because It was the last level implemented. As
explained before (see Boat), with all assets and tools ready, it was much easier to do my
job and finish this level with a few hours of work.

Firstly, I created a few weeks before the real implementation a draft of the level to have
an image of the scale of the level and its objects to help Lou creating them. As you can
see here, the skeleton was done with it:

Figure 11: View of classroom in Unity, greybox stage

With that done, we decided together to make some assets to make the level look like
a real classroom: class desks, chairs, books (opened and closed), a blackboard, etc...

A few weeks later, I was able to build again the level with the new assets (including
bar assets). This is the first result after the first build of the level:

I polished the level a little bit later. It was made possible thanks to Unity Student
Pack assets. It included a set of school assets1. It was an opportunity to make a class-
room even more realistic (and a bit like EPITA’s classrooms).

1https://assetstore.unity.com/packages/3d/environments/urban/

snaps-prototype-school-154693

22

https://assetstore.unity.com/packages/3d/environments/urban/snaps-prototype-school-154693
https://assetstore.unity.com/packages/3d/environments/urban/snaps-prototype-school-154693

Bartendu Project report 27/05/2020

Figure 12: Classroom level after the implementation of the assets made
by Lou

As you can see below, the result is good, and the level looks like a real classroom. It
is our biggest kitchen and bar layout in the game. Hence, we adopted a dynamic ap-
proach during the implementation of cameras. There is not any restaurant part because
we considered that It would break immersion. Hence, we adopted another approach with
orders having to be delivered at the door.

Figure 13: Classroom stage view in Unity (final result)

23

Bartendu Project report 27/05/2020

2.5 Story Writing

In addition to the multiplayer we have implemented a solo mode. It includes three original
stories. My task was to write and design those levels. Once done, Vincent was the one in
charge of implementation of cutscenes and scripting for this level.

Our game includes three original storylines:

1. A food-critic comes in the restaurant to evaluate its quality. He is the only client
and if there is any delay you will lose many points.

2. At the grand opening of the boat restaurant, a pirate comes to defy your team. If
you lose against the pirate’s team you will lose your boat.

3. A student needs to earn some money to repay his debt. Hence, he must cook in the
classroom and deliver orders to Duber Eats.

For each of these stories I had to create a script then export it in an excel file (csv format),
and to create the graph around this script. This system was created by Vincent (note to
his part).

I had a lot of fun creating these stories and their gameplay concepts. However, I and
the team had many more ideas we were not able to implement due to a lack of time even
though we satisfied the requirements made in the book of specifications.

2.6 Experience in the group

During this project, I was also the group leader. Hence, I was the one in charge of mak-
ing sure everything worked out well between the different people in the group. I also
had to make sure everyone was dedicated to the project. Obviously, I had some tasks
around organization. It meant organizing meetings to see how things progressed, creating
deadlines, keeping track of everything done, etc... Because doing such a project during a
semester is not easy, it was mandatory to keep a strong organization of tasks in the group.

For example, during some weeks the team had too much (regular/school) work to do.
So, I had to reorganize our schedule to make sure we would be meeting the deadlines for
the presentation. Or even some tasks being late due to unforeseen complexity.

Overall, I can say it was an amazing experience. Having to deal with some problems,
but also with group members who are fully dedicated to their tasks made my job even
more interesting. Moreover, the quarantine made things even more interesting because ev-
erything had to be done online. Discord (https://discord.com/), Unity Teams, GitHub,
were great tools to help us with that.

24

https://discord.com/

Bartendu Project report 27/05/2020

3 Vincent’s Achievements

3.1 Introduction

We have been working on Bartendu for 6 months now and I have enjoyed it so far. It is a
record for me to have worked on a project for this long. I always drop my projects about
a month after starting them, so this was a new experience to me. At some point I just
did not feel like working on this project, but I had no choice. My teammates relied on me
and I relied on them. This was also totally new because I had always worked alone. So,
sometimes they would ask me to implement something and they could not continue what
they were doing because they needed me to implement it. It was sometimes frustrating
because I was already working on something else. But overall, this experience was very
rewarding. I learned a lot, I was sometimes pushed to my limit (thanks to a lot of bugs)
but I am, and I think we all are, proud of presenting this game.

My tasks for this project concerned all the technical part and the implementation in
Unity. When we distributed the different tasks, we tried to give to everyone a field of
work that the person enjoyed or had a bit of experience in. I had a lot of experience in
Unity and I loved programming so we decided that I would choose those tasks. I ended up
also doing some sprites for the game like the logos or even the different 2D graphics you
can see while ordering or the graphics representing the food. I had no prior experience,
but someone had to do it, so I took it upon myself to provide those graphics. Can I say
I learned how to do 2D art? Probably not... I am not an artist and my art skills have
not evolved nor improved and that can be seen in the game... But I still am very proud
of the work that I have made.

Each phase of the project had a different focus. I will review my work theme by theme
instead of chronologically because it will ease comprehension as I did not do everything
at once but rather a little bit each phase.

The first important theme I tackled is the multiplayer. We were advised to start with
this, and I am grateful for that advice. It was (not by far) the hardest part of the project
for me. I had no prior experience with the multiplayer and was new to these concepts of
server synchronization, server objects, clients, and master client. I learned RPCs which
can send information to the server and I also learned about custom serialization which
allows you to send custom data through the server. My lack of understanding led to a
handful of bugs which was devastating for me at that time, but I do believe it made me
stronger and taught me not to give up as soon as a difficulty arose.

The second theme was the singleplayer. We had from the beginning mentioned the sin-
gleplayer. For us it was important to implement this as not everyone can play online and
as it would give us the possibility to script some levels which would have been difficult
online due to synchronization and different internet connections. This part was not easy
per say but it was the part of the project I most enjoyed working on. When I say easy, I
say that because we already had the base finished. All that was left to do was to change
the multiplayer to the singleplayer. Again, thanks to the advice we got, it was way easier
to go from a multiplayer to a singleplayer rather than the other way around. During this
part I also implemented scriptable levels, a cinematic system and a dialogue one.

25

Bartendu Project report 27/05/2020

The final part was all about refining the details and the AI. I originally planned on
implementing it during the second phase of our project. But I had underestimated the
amount of work to go from a multiplayer to a singleplayer. Refining details included bug
fixes (and they were a lot of them), adding more customization for the player and making
the UI more user-friendly. Now the AI was not that easy to implement. It was probably
the second most difficult task and it took a lot of sleep away from me... But I will tell
you all about it later in this report. Let us go back to the multiplayer implementation.

3.2 Base of the game and multiplayer

This was our first big theme. First, we had to create a very quick multiplayer. This ver-
sion of the multiplayer would allow us to join a lobby and then connect to a room. This
was maybe the easiest thing to implement. With a lot of research and my programing
experience this was implemented in a heartbeat. It was functional but not even close to
the game we have today.

What lacked was the gameplay. This is where we implement the base of the game. It
includes the player controller and core functionalities like cooking, cutting, merging and
serving.

3.2.1 Base of the game: Player controller

Again, my experience really helped me here. With a lot of games done – or partially
at least – within my 3 years of programming with Unity, I learned that physics-based
movement were to favor over simply translating the player on the coordinate axis. This
is because collisions will stop any force. Meaning even if we boost in front of a wall the
collider will stop the player. Whereas if you boost in front of a wall with a none physics-
based movement, there is a chance that the player will just teleport through the wall if
the player tries to move past the wall. Again, and I will never stress this enough, with
my experience in programing we were able to have a moving character in a day due to
the countless character controllers I had to implement in past projects.

But even if moving is important it is not the only thing a character controller must
do. We must implement the different actions the player can do. There were 4 actions
we wanted to implement. One is to take or drop an item, the second action is to use an
item like the cutting board, the shaker or the extinguisher, the third action is to throw
an object (this is still very experimental, I tested it thoroughly but I am not sure if this
action should stay in the game) and lastly I implemented the boost action. It allows you
to boost to give you additional speed in the forward direction but only occasionally every
now and then.

When it came to bugs, I saw none at that time. But it turned out that the pick and
drop action was the main source of the problem. That is why even if the script should be
fairly simple (only movements and actions in this script) it ended up being over 1000 lines
long and about 2900 words (More stats will come in the conclusion about the amount of
lines of code in this game).

26

Bartendu Project report 27/05/2020

3.2.2 Multiplayer: Spawning objects on the server

I think this was the first problem I encountered. The ability to spawn objects on the
server. Spawning objects on a single computer was not very hard. Spawning it on 2 to 4
computers is a different topic. I was very new to the concept of server synchronization.
So, every client would spawn this object and we would end up with 4 objects at the same
place causing all sorts of strange bugs. Plus, testing at that time was very difficult because
I had to build the game every time (at that time the project was not very big, but it still
took about a minute to build the game just to play 5 seconds and realize that the game
is just not working).

I realized I needed to spawn the object on the server instead of on each client. I also
discovered after some research that we had to use special components to synchronize the
position and the physics. Another problem showed up. While instantiating an object
on the computer return the object spawned, it is not the case for the Photon Network
Instantiate. This was terrible news because it would complicate everything even more. I
had to create yet another script to handle the instantiation. If a viewID was given during
the instantiation, the object would search this id and get the parent object. With this
object, the newly instantiated object would set its parent to be the object found and we
could then get the instantiated object by getting the first child.

Spawning objects on the server remained an important theme throughout the entire de-
velopment of this game but thanks to the “ObjectHandler” script I was able to correctly
spawn objects without worrying about if they would synchronize with other players.

3.2.3 Base of the game: Core mechanics

Now that we could spawn objects, it was time to add the very base of the game. The
very first building block of our game was the SnapToSurface script. Indeed, we wanted
a grid-based game meaning the objects would be able to move freely anywhere but as
soon as they encountered a surface (like a working surface, cutting board and more) they
would snap to a grid resetting their rotation and physics. When I say that this script is
the building block of our game, I mean it. Every surface has this script, I quoted some
before, but the list goes on and on. One particular type of object in this list I want to
talk about is the movable surface. It is a surface, but the player can also pick this surface.
This type of object was useful regarding plates, glasses and pans. They all are surfaces
meaning objects can snap in it. But they also are movable as the player and pick them
and put them on any surface.

Movable surfaces are essential to the game: you need to be able to serve a dish on a
plate, you need to be able to cook a steak and then remove it from the stove and you
also need to be able to serve a drink in a glass. The huge problem was to move the 2
objects at the same time, and this caused all sorts of weird bugs. . . The player would
start to fly, a giant tomato would turn into a huge disk, players would clip through the
floor, objects would not follow the intended holder. . . All these bugs took so much time
and effort to fix. Up until the last defense some of the countless bugs were still coming
from the movable surfaces. This was a really low point for me and at that time I lost all
desire to work on the project. And working on plates for a month without knowing the
source of the problem is very frustrating...

27

Bartendu Project report 27/05/2020

Thankfully, I slowly started to work again on the project due to the deadline coming
up and it turned out just fine in the end. The problem was collisions and physics messing
with the object’s scale and doing all sorts of weird stuff. It was an unfortunate problem
of the 3D asset of the plate. Lou had just gotten the hang of Blender and together we
were able to fix the bug.

Another script I added that would complement the SnapToSurface is the script UseSur-
face. The name is self-explanatory, it allows you to use the surface by reducing the health
of objects held by the SnapToSurface. This script is used for the cutting board, sink,
pestle and shaker. I also added a trash can which uses the SnapToSurface script and then
destroy any object held by it. Of course, I then had to add a lot more functionalities like
not being able to destroy important objects like the extinguisher or a plate. For that I
used a tag that allows me to check if the item cannot be trashed. One last small mechanic
I added was the fire and the spreading of the fire. Fire occurs when you leave something
on the stove for too long. You then must take the extinguisher fast to take out the fire
before it can spread to nearby surfaces. The spreading is random but deadly as you will
not be able to use the surfaces on fire.

The last big feature I had to implement was the room part. A huge inspiration for
our game was Overcooked. But we wanted to get away from the game and create our
own. So, we decided to add the room part. Here the goal is to serve the food to the
clients as well as seat them and clean the table. The first thing to implement was a client
generator capable of generating clients with orders for the player to complete. This was a
whole new kind of problem to solve because this time it was not a technical one but more
like a level designing problem. I worked together with Jean to implement this feature. He
designed an order manager with diagrams and I tried to implement it in the game. At
the end of the first deadline we had a somehow working (but not really) order manager
and room management. But I decided to do it completely again from scratch because I
was not happy with how it turned out. The whole thing was unstable and was working
strangely in multiplayer. But first let me give you the basics of client management.

The clients spawn and then use a spot to wait for one of the players to seat them.
To move around they use a NavMeshAgent, Unity’s AI movement controller. For that
to work we had to bake a map giving the different surfaces the AI can walk on (This
method of moving non-player objects will later be used for the AI). Each client of the
group shares the same properties (they are synchronized - on the server for multiplayer -
at the beginning of the game and then each time a player interacts with a client). The
shared properties allow the players to interact with any client of the group, so they do
not have to find the client with all the attributes. One of those attributes is the state of
the client. The different states include Waiting, FollowingPlayer, SeatAtTable, ReadyTo-
Order, WaitingForMeal, Eating and Leaving.

28

Bartendu Project report 27/05/2020

When they are waiting, the player can interact with one of them to switch them all
to “following player”. Then if he interacts with one of them again, they will look in a 2
wide radius to see if there is an empty and cleaned table nearby. If there is, they will seat
randomly, if not they will go back to “Waiting” and just stay in place. Seating clients at
the table was another fun thing to do. We had the plan to have one table of 2 people
and one table of 4 people. But the goal here was to serve a dish for each table of two.
Meaning that the table of 4 would be split into 2 tables of 2 each requesting a different
(or not) dish. When I say this was fun it is because I implemented a surely useless feature
but somewhat fun that seat the client randomly. For example, if the client is alone and
you decide to seat him at a table for 4 people, then he will not seat at the same place if
you start the experiment again. The placement is random, and this allows the restaurant
to feel more realistic.

Then the player does not have to interact with the clients anymore. The Table script
alongside the PassSurface script will handle the rest. First, when a client group is spawned,
they randomly choose a number within the bounds given by the GameManager script to
know how long they will take to order and how long they will take to eat. This is also
a feature implemented for realism and breaking the monotony of the game. So as soon
as the clients are seated, they will start a countdown. When this count down reaches
0, the group will order a dish. The menu where they can choose a dish from is also on
the GameManager script. Once you receive the order you have a certain amount of time,
depending on the difficulty of the preparation of the dish and time to make the dish, to
serve it to the clients. If the timer runs out, you lose points and the timer resets. If
you serve the wrong food, you also lose point but if you serve the right food before the
timer runs out you get points and the clients start eating. As for ordering they will take
a certain amount of time to eat.

Once they are done eating, they will leave the restaurant letting a dirty plate (or glass)
on the table. It will then be your job to clean the table before you can seat another client
group at that table. Doing the dishes in Bartendu is a bit particular. You clean dirty
plates in the sink, but you trash glasses to get a new one. The idea behind is that the
glasses are made of faux glass and you can trash it (of course it gets recycled because
Bartendu is an eco-friendly game) and get a new one clean. This is basically how the
room management works.

I previously said I would talk about why I chose to re write the whole order management
from scratch. The problem was that the clients would not synchronize their properties
causing bugs when interacting with another client from the one you interacted at the
beginning. Doing it all over again was the best option rather than fixing and building
over an already unstable script.

Finally, I implemented an endgame screen. It would become very different in the sin-
gleplayer version of the game, but the functionalities remain the same. The end panel
will compare your score to the thresholds given again by the GameManager. If you exceed
at least the first threshold then the level is considered complete. You also have stars to
collect that represent the different points thresholds. The star system as well as the high-
score mechanics are built to make the players try again and again to beat their highscore
and collect all stars and try to do a perfect run of the level.

29

Bartendu Project report 27/05/2020

3.3 Singleplayer

Almost everything said previously was implemented before the first defense. Except for
all the reworks and the cocktails mechanics.

The second focus of Bartendu was the singleplayer. And this took an unexpected amount
of time. I first thought that it would be done in a week, but it turned out to take the entire
6 weeks. Indeed, all the assets implemented previously all had multiplayer components.
I had to entirely redo the entirety of the assets to adapt them in the singleplayer. And
this was not fun. It was not complicated but time consuming. So, let us first talk about
the assets in the game.

3.3.1 Base of the game: Food properties and Food recipes

One important thing we wanted was the ability to combine the food in any way possible
or imaginable. This led to the creation of huge amount of properties and recipes to make
sur that every way of combining the food was possible. For example, to make a Bread-
SteakLettuce you can either add Bread to a SteakLettuce or Steak to a BreadLettuce or
even Lettuce to a BreadSteak. But this had to be done for every single property and for
the 4 dishes that a client could order: a salad, a hamburger (5 possible), a cosmopolitan or
a mojito. The salad was easy because it has only 2 ingredients, but all of the other orders
have 4 ingredients, meaning each of them have 15 different properties and 25 recipes. Now
you can imagine the amount of time to make those in the first place and you can then
imagine having to do them a second time.

The different attributes of the food property are: the object to display (one for the
singleplayer and one for the multiplayer), the ingredients that the food is composed of (to
be able to show the composition of the object to the player), the recipes you can make
with this food, the health of this object (to be able to use it in a surface [-1 for invin-
cible; -2 for burned], the targeted layer surface (if the food requires a special surface to
be transformed in (like the ice or the cut lemon needed to be transformed in the pestle),
the transformed property (when the object’s life has reached 0), the object to spawn if
the food is given to a client (either a dirty plate or a dirty glass [3 types of glass]) and
the cocktail object (only for cocktails to put the cocktail in an invisible plate so you can
serve the drink to a client)

That being said, even if it took a humongous amount of time, it was definitely worth
it as now the game is fluid and you do not have to think of the order the ingredients need
to go in.

3.3.2 Singleplayer: rewriting scripts and recreating prefabs

A lot was done on the server especially sending information. Since we did not have a
server anymore, we had to find a way to pass this information. In fact, this was super
easy (way easier than going through a server). But even if it was easy, I still had to go
through every single script and change function by function. Another tedious task was
to entirely recreate all prefabs. Not only did I have to recreate every property and recipe
I also had to recreate prefabs to remove the server components (Photon View, Photon
Transform and Photon Rigidbody). This took so much time and yet a lot more had to
be done before the second defense.

30

Bartendu Project report 27/05/2020

3.3.3 Singleplayer: Cinematics

What do you remember in a game? The graphics? Lou had us covered with beautiful
assets. The animations, particle effects and sound effect? Emeline carried that out. The
Levels? Jean created 3 magnificent levels. How about all together with beautiful camera
work? This is where cinematics come into place. The first step of creating a beautiful
cinematic with dialogues is to be able to display the dialogues in different languages. Here
English and French.

Cinematics: The localization system
I already explained in detail what the localization system is in the previous report, so I
will not go into so much detail but here is a summary:
The localization system is a script responsible for handling the different languages in your
game. Here I decided to use Excel as an input for my localization system so that Jean,
who is implementing the dialogues and their translations, can have an easy and fast way
to use and implement the dialogues and their translations into the game. Indeed, its
interface is very easy to use and comprehend. On the leftmost column we would put the
identifier key, the one unity can understand and look for when trying to display a text.
On the second column would be the English version and on the third the French version.

Now having all this written in a block is not very readable. We had to find a way to
determine which cell has a text we need to integrate to the localization tool and which
text is just a header or commentary. For that we decided to use a special character, the
tilted double quote.

Combine with REGEX expressions (Regular Expression) we can extract the text within
those special characters and give it to the localization tool.

As soon as the entire Excel document is formatted, we can then proceed to add it to
the project. One problem, Unity does not accept “.xls” files; instead, it does accept
“.cvs” files which is perfect because Excel allows us to transform a sheet into a CVS file.
In short, a CVS file is a file where every cell is delimited by a comma. (CVS stands for
Comma-separated values)

Now that we have a CVS file, we must be able to read it and then create the tool.
We get the texts given by the file and we put them in the according dictionary: either the
English one or the French one. The text value goes in with its according key. For exam-
ple: ([greetings intro 1, “Hello World”] for the English dictionary and [greetings intro 1,
“Bonjour le monde”] for the French one). Then we just have to call the localization tool
and ask for the text with the key “greetings intro 1” and we get “Hello World” if the
language is set to English and “Bonjour le monde” if the language is set to French.

Now that we have a working localization tool it is now time to work on the dialogue
system.

31

Bartendu Project report 27/05/2020

Cinematics: The dialogue system
The dialogue system is a simple script that asks for the localized text from a list of keys
and displays it. When the player presses the space bar, the system changes the current
key to the next one and so on and so forth. But we wanted to add more character to our
dialogues... More interaction... We thus decided to implement a possibility to influence
the dialogue we get. This is what we called “Dialogues options”: You get multiple options
and according to which one you chose you are greeted with a different dialogue.

Before the second defense we would have handled the dialogue system with scriptable
objects. But it was very inefficient, not visual at all and time consuming. I thus recreated
this system using Unity’s Graph View. This allowed Jean to create Dialogues that look
like a horizontal tree. Very visual and practical, each node represents a dialogue; you
can then insert in a list of string with the name of the speaker and then the dialogue
key and the dialogue system will correctly display the dialogue. When a choice can be
made you can add more output ports to the node to then connect this node to different
dialogue nodes. This allows the player to choose a different dialogue, here representing
the different branches of the tree.

Finally, Jean asked me to add a way to trigger functions using a key. I thus created
a special code (if the key starts with then it will be a trigger key). The key does not go
to the localization tool as it has no translation but rather investigate a dictionary on the
Dialogue system to see if there is a corresponding key and a function associated. If there
is, it just runs the function and continue his way into the tree.

Cinematics: Moving cameras
Cameras are a key point for successful cinematics, they are what makes a cinematic look
great. Smooth movement, right camera angles, everything is made to deliver the best shot
of the game. When I first tried implementing moving cameras, I decided to create my own
script. The result was fine but not that great. The big problem was that my movement
were a bit abrupt and sharp which was the opposite of what we wanted to achieve. I was
using key points creating a path for the camera and the camera had to try to match the
rotation of each point it encountered on the path. However, we wanted something more
professional and better looking. With some research on the internet I found an amazing
unity package: Cinemachine. This package allows us to have very smooth rotation but
also to change camera during the cinematic to get the best shots. This was perfect. It
took a bit of time to get used to this new powerful tool but in the end, I think the results
look great.

32

Bartendu Project report 27/05/2020

Cinematics: Cinematic manager
All we need to do now is wrap everything up together. Which means launching the
dialogue at the right time, having the cameras match the client’s animation, stopping
the dialogue during animations (when the barman prepare the drink for the client, the
dialogue must stop so that the animation plays correctly) and at the end of the game
loading the right scene (Victory or Defeat). We have not mention yet but each cinematic
take place in a different scene. For example, because the camera in the defeat and victory
scene does not move, an entire part of the level has been removed because it would never
be seen. This can greatly improve performances and was easier for us to work in these
levels. We decided to label the different scenes as follows: Level X + (KEYWORD)
[X represents the number of the level and the KEYWORD can either be Intro, Victory,
Defeat or blank for the actual playable scene]. With that we can just load the right scene
with its build name.

3.3.4 Singleplayer: Scripting the gameplay

Another decision we took was to script the gameplay for the singleplayer so that we could
tell a story. As I went into details for the first level, I will quickly explain it and go on
with the other levels.

Scripting the gameplay: Level 1
The concept for the level 1 was to give an overview of the game to the player. Meaning
we removed the bar part (no drinks must be done) as well as the room part (you do not
have to handle client seating). Instead you have one client, Mr. Insatiable. The catch
behind is that he never stops ordering food. As soon as you give him the correct dish,
he will order another one. The only way you can make him stop eating is if your level
timer runs out. In that case your points will be evaluated according to the thresholds and
you will know if you won or not. But in order to make the level last a little bit longer,
each time you correctly complete an order, some time will be added in you level timer.
Mr. Insatiable can order from an exhaustive list of 5 burgers (the hamburger, the burger
steak, the burger steak lettuce, the burger steak tomato and the burger lettuce tomato).

This level was interesting when talking about technical specifications because it required
to rework the order manager and to add a few methods. While not being complicated nor
time consuming it was still a very amusing change of pace after coding all the previous
more complicated scripts. But overall, I did not change much, and the core gameplay
remains the same.

Scripting the gameplay: Level 2
On to the second level. This one was not very difficult to implement because it required
no scripting. The goal of this level is to engage on a battle against a pirate to see who
will control the sea. Here we added core gameplay features such as the bar and clients.
They can order any food implemented in the game and you must get as many points as
possible within the time limit. When the timer runs out you get the end scene.

33

Bartendu Project report 27/05/2020

Scripting the gameplay: Level 3
This time scripting had to be done, here is the idea behind this level. You are a student
behind on the bills, so you have to cook even in class (a classroom that strangely resembles
EPITA’s) and make sure you do not get caught by the teacher (a teacher that strangely
resembles someone I know). Here the scripting is fairly simple, we just have to randomly
and every now and then make the teacher look back and check if the players are moving.
If they are, deduce points and give an audio feedback to let them know they were caught.
I also implemented, after a suggestion by Jean, a red light to know when the teacher is
going to move to make it a bit easier. But because it would then be too easy, sometimes
the teacher will give a false alarm and will not completely look back.

Scripting the gameplay: Level 1 and 2
Overall, this was very fun to add but I thought that the first 2 levels were missing some
fun gameplay mechanics... So, here is what I added. For the level 1 I added mice that will
spawn and steal unsupervised food. You must take the food away before they do because
after that it will be too late. And for the second level, as we are on a boat some surfaces
will move due to the ocean. This caused a lot of bugs but greatly improved the gameplay
overall.

3.3.5 Saving data

This was the final part of the singleplayer: being able to save your progression. I will not
go into too much details as it is a pretty simple part, but we created a script to handle
the save and load of the star count and best score for each level. I honestly had very little
experience in this field, so I mainly took inspiration from tutorials online and forums. A
few lines of code later and the system was correctly working. It basically uses serialization
to convert data into text and then saves that file in the game’s file. I am pretty sure that
with enough knowledge or a bit of research anyone could understand the text file and
change the values, but we decided to turn a blind eye and avoid any attempt at encoding
our data for time reasons.

34

Bartendu Project report 27/05/2020

3.4 AI and final touches

As said previously the AI should have been implemented for the second defense. Even
though it was not implemented, some research was made, and I had a rough idea on how
to implement it. Needless to say, I struggled a lot and that probably was the second
lowest point for me. Stress was building up; we were very close to the deadline we gave
ourselves and this AI almost got the best of me. Here is my journey.

3.4.1 AI: Basic actions

The AI is a player. It just does not use the player input but anything the player can
do, the AI can too. That meant implementing the same actions as the player but this
time for the AI. Fairly easy you would say. Well it was. The actions were implemented
in the PlayerController script, so I just copied that out and pasted it into the AI script.
I then added the movement for the AI to navigate through the level. I used coroutines
and NavMeshAgent to move the AI because coroutines allowed me to wait for the AI to
arrive at destination.

Here are the actions I implemented: Pick (to pick an object from the ground or a surface),
Drop (to drop an object on a surface [cannot drop an object on the floor]), Use surface
(keep using until the object inside the surface has changed), Cook (wait for the object
inside the surface to cook and then remove the pan from the stove).

All these actions allowed the AI to do anything the player does. And it was a breeze
to implement. I was fairly happy and thought to myself “Now this is easy!”. I was such
a fool.

3.4.2 AI: Brain

Now that we have actions, we need to put them together to make the AI do coherent
things. Not just random actions. This is where I implement the AI brain.

Brain: Get the correct recipe
It is at that point that I realize this was not easy and that we shot ourselves in the foot
when we decided to create about 70 recipes. How will the AI know which recipe to make?
I would be tempting to take the first one and just go with it. But I am a man of challenge
(it probably caused my doom). I wanted to make an AI that you would be happy to play
with. An AI intelligent not just following one recipe but instead analyzing its environment
and choosing the correct recipe. What a mistake.

First step is to decide what is a food that the AI can interact with. This was done
so that the AI could not interact with a food the player touched (allowing the player to
play without the AI just taking the food he is making because it would not be much fun).
So, I gave the ability for the AI to pick items only if they are in spawners. When it does
that, if the food does not have an AI tag on it, it will add one. An AI tag is a script that
does nothing, but the AI can look for object with this tag and know that it can interact
with it.

35

Bartendu Project report 27/05/2020

Once you know what objects your environment is composed of, you can start looking
at the recipes. The AI looks for the first order and tries to make it. It first gets all the
possible recipes to make a dish from scratch. Then the AI evaluates which recipe has
the most potential (if you already have the ingredient in your environment the recipe has
potential because the food is already ready to use). Once the AI has the perfect recipe it
will start cooking. And every time it finishes (or not for example if the player took the
food the AI wanted to pick or if the player uses the surface the AI wanted to use) it will
reevaluate the best recipe possible and continue.

One thing that my AI struggled with is knowing how to get basic food. Because sliced
lettuce or cooked steak do not have a recipe, the AI does not know how to make that.
I first implemented the action to pick from a dispenser (like a fridge, crate or a cold
spawner) then I added the action of getting a tomato or lettuce then cutting it and then
the action of getting a steak and then cooking it.

Finally, I added the action of plating, serving, cleaning the table and doing the dishes. I
had trouble knowing exactly when to clean the table and do the dishes so the AI will just
wait for the clients to eat the food then it will clean the tables and do the dishes. I already
had a hard time implementing this AI I did not want to add the room management, so
the AI is not capable of handling clients (seating them).

Brain: Bugs, bugs and bugs
Probably the biggest source of bugs for our project. It took one test run to completely
take down the AI. The problem is that when I implemented the actions, it did not take
into consideration the fact that there would be players around and that players would
also use the same environment as the AI. The main source of bugs was coming from the
fact that players would steal the food that the AI was working on, or use the surface the
AI wanted to use. . . All these bugs had to be fixed in order to present a game as bug
free as possible and it took my sanity with it. At the end of the day this AI is far from
perfect, but it is still somewhat working so this is a huge pride for me.

3.4.3 Final touches: Customization and bug fixes

Final touches were mainly focused around bug fixes and the rework of certain features
like the order management or the dialogue management. We implemented the player
name over the player so that players could tell each other apart. We also added colors
to the names as well as a skin selection as promised. We finally added the level selection
for multiplayer and reworked the interfaces to be more user-friendly. The language was
generalized on the entire game not just the level and I created an installer for the game.

3.5 UI work

I really had no experience creating sprites, but I had fun doing that. I created a logo for
the company and a logo for the game. Then I started to create the sprites for the game
that are used for the orders and the display to know what the item is made of. Overall,
more than 30 sprites made it into the game, they are not beautiful, but I love them very
much.

36

Bartendu Project report 27/05/2020

3.6 Small tasks

I had a lot of experience with Unity, so I took the lead when it came to implementing 3D
assets. I also implemented the 2D assets I created and designed the entirety of the user-
interface for the game. From the main menu (with its animation), lobby to the in-game
UI, I tried to make it as small as possible, as well as comprehensible and beautiful. I also
added some camera effects for all scenes to try to make the game even more beautiful.
Some of those effects include colored vignette, chromatic aberration, shadows enhancing,
color correction and color temperature and overall color balance, contrast, exposure.

Finally, I helped some of my teammates to get used to Unity, but I only had to do
this once and they got the gist of it very quickly!

3.7 Conclusion

I really loved working on this project. Even if there were ups and downs, I am really
proud of what we have made, proud of my teammates and a bit proud of myself. I did
not think that it would be such an adventure to work on this project, but I was lucky to
be working with such a great team. We got along pretty well, and we worked hard for
this project. I do not really know if I will ever work on this project again, but I heard
that at least one of us is, and I think it is pretty cool.

I learned a lot from that game. Technically, I got to create a multiplayer, an AI and
tackle a lot of fields I never did before like the user-interface and sprites creation. Men-
tally I learnt a lot too. I felt really bad at some points in the making of this game but I
never gave up (not that I could have because I would have) but it also taught me how to
work in a group (which I had never done while working on a game) and also helped me
deal with my stress issues.

When I look back at this project, I feel proud. I caught myself playing instead of work-
ing because I loved what my teammates did. The levels are beautiful, the objects are
impeccable and all the effects (animations, particles and music) make the player immerse
themself so well in the game. We have been working on this project for so long and even
though I am happy to turn the page I will still miss this project as I put so much into it.
I worked very hard and I always wondered how much I wrote.

So, here are some fun stats:

• I created 74 scripts

• The longest is PlayerController with 1000+ lines

• The shortest is AiTag with 0 lines

• All scripts combined make up:
– 8.000+ lines
– 20.800+ word
– 175.000+ characters without space

37

Bartendu Project report 27/05/2020

4 Lou’s Achievements

4.1 3D modeling : Introduction

3D modeling was a very important part of this project, we wanted our game to look
“cartoonish” and so we decided to use Blender in order to create our own assets. Plus,
we thought that it would be funnier to have our own assets, that we would have built for
our game. This was challenging because none of us had any experience with this software.
So, I was charged with the task to learn how to use Blender and to create all our assets
in order to create a game that would look exactly how we would imagine it.

4.2 Blender

So, as I mentioned before, I used Blender in order to create the assets of the game. First,
I had to learn how to use this software. We did not need any complicated shapes for
our assets, but the first ones were very hard to make. The closest thing I had to a 3D
modeling experience was the use of the software SolidWork in high school and I remember
having trouble using it. Blender was different, it seemed easier to use but was not, there
were so many options on how I could modify an object or create an object. It took time
to learn how to extrude, add objects and shape them the way I wanted to but also on
how to join different objects.

Finally, with the help of many tutorials, YouTube videos and Google pages, I managed
to create assets, but I had a few difficulties along the project, to make objects, to export
them in Unity, etc...

Those difficulties were the following:

• One of the first difficulty I encountered was learning the different shortcuts and how
to use the different tools in Blender

• Then I had to figure out how to assemble different elements I was creating, at first
I used a modifier called Boolean but then I discovered that I could just right click
on the items and join them.

• I also had to figure out how to add colors on different faces, we decided to use color
instead of texture (except for the glasses) so our assets looked more vintage and
“cartoonish”.

• One difficulty that I encountered was the rotation of the asset and its location that
were different in Blender and Unity. I managed to fix the problem by applying the
rotation and the location on the object. I had the same issue with the scale and
size and fixed it using the same method.

• I struggled with exporting the assets with the correct scale,. . . then I found out
that I had to transform each asset into an FBX file and check the box Apply all
Transforms otherwise even if the transforms were applied in Blender, the result in
Unity wasn’t the same.

• Then I found it hard to find the correct mesh and form to obtain what we needed,
but with practice it became easier.

38

Bartendu Project report 27/05/2020

• Another issue I had was that some faces were invisible on Unity but not on Blender
so I fixed the problem by creating a new modifiers at the object called solidify in
order to add thickness to the faces that were “invisible” and became transparent in
Unity.

• I then discovered that the colors in Blender and Unity seemed different so while I
was adding the color I also added a light (a sun) in Blender in order to pick the
right colors then I would remove the light to export the assets (so that we would
not have too much light in our scene).

• I struggled with adding bones and weight to an asset so that we could animate it
later on but I managed to do it after a few tries.

4.3 First Assets

The first assets to be created were the one that would be used in all the levels and the
ones we needed the most.

The following assets were made:
— A tomato and a slice of tomato to represent what the tomato becomes after being cut
— A lettuce and a slice of lettuce to represent what the lettuce becomes after being cut
— An extinguisher that would be used in case some meat is left to cook for too long
— Steaks: burned, cooked and uncooked to represent the different states they could be
in
— Some glasses to put soft drinks in
— A pan
— Bread
— Plates: clean and dirty (once the customers are done eating
— Hamburgers with all the different possibilities (bread, tomato and steak, bread, lettuce
and steak. . .)
— A salad
— A Ragdoll to represent the customers

Figure 14: A pan Figure 15: A hamburger

Those assets were hard to make because I learned to use Blender while creating them,
but it turned out okay and their looks matched our vision of what the game would look
like.

39

Bartendu Project report 27/05/2020

4.4 Ragdoll to represent the customers

One of the most difficult asset to realize during the first part of the project was the Ragdoll
that would represent the costumers. I spent a lot of time doing it and it was beneficial
because I learned more by creating this asset than in creating the first ones.

Figure 16: Ragdoll

Once I finished building the model, I then had to create an armature (with bones) and
add weight so that Emeline could animate it. The difficult part was to add weight because
I was not going to do the animation and I was not sure which movements the Ragdoll
would need to be able to do. After finishing the Ragdoll we decided that Emeline would
make the bones and add the weight on the next assets we would have to animate as she
knew which movements they would have to do, hence it would be less time consuming.
Moreover, adding the bones and weight felt like a part of the animation process.

40

Bartendu Project report 27/05/2020

4.5 Other Assets

For the second defense new assets were added to the game, those new assets were meant
to be used in the bar part of the game, among them: two cocktails, Mojitos and Cos-
mopolitans, as well as soft drinks, tools and ingredients to create those cocktails.

Here is the list of those assets:
— Mojito’s glasses empty and full
— Cosmopolitan’s glasses empty and full
— A shaker
— A Machine to create some soft drinks (coke...)
— Mint
— Lime
— Ice cubes
— Cranberry juice
— Bottle of alcohol
— A mortar and pestle (to prepare some ingredients)

Figure 17: Pestle and Mortar Figure 18: Cranberry juice

The texture of the glass and ice have been added in Unity as it was easier to do so and
looked better.

Plus some other assets were replaced from the ones previously made in Unity:
— A Chair
— A Table
— . . .

41

Bartendu Project report 27/05/2020

4.6 Assets specially made for some levels

For the need of some levels we decided to create new assets that would be used only in
those particular levels in order to make our game better looking and funnier to play.

So for the level where a food critic comes into the player’s restaurant, a new Ragdoll
Mr.Insatiable has been made. This ragdoll is bigger and has different colors than the
ragdoll used to represent the customers in order to be recognizable.

Then for the level that takes place on a pirate’s boat, assets have been created to re-
spect this pirate themed level such as:
— Barrels (to decorate the ship)
— A bridge so that the customers could board on the boat
— A boat
— Another character representing a pirate, this character is not a ragdoll, it was better
looking and easier to realize it using the same design as the characters the players can
impersonate.

Figure 19: Pirate Figure 20: Barrel

Other assets have been made for other levels, such as the level in a classroom:
— New tables with different colors (red, blue, yellow) like the ones we can find in EPITA
— New chairs with different colors (red, blue, yellow) like the ones we can find in EPITA
— A black board with chalks
— Open Books
— Closed Books
— A new ragdoll to represent the Teacher of the class (this ragdoll like the one named
Mr. Insatiable is different (colors, size, glasses,. . .)

42

Bartendu Project report 27/05/2020

Figure 21: Classroom chair Figure 22: Classroom table

4.7 The boat

The boat was the biggest asset I had to make for the game, and it took a long time to
create. It is composed of a deck, a top deck with a ladder to access this part of the boat,
and a door to access the boat hold (that Jean designed on Unity).

Figure 23: The boat, named ”Le Loup de Mer”

The goal was to create this asset big enough so that Jean could build the restaurant on
the deck with the table for the clients on it and the bar on the top deck. The kitchen
would then be in the boat hold. Then the boat would be put at sea near the coast.

One of the biggest challenge to make this asset was making sure that it would be big
enough to fit the restaurant’s rooms but that it was on a scale similar to the one of the
players and customers so that it would not look excessive. Then all the details like the
canon, the windows were not hard to make, it just took some time. I am really happy
with the result as it was definitely one of the biggest challenges of 3D modeling for this
project.

43

Bartendu Project report 27/05/2020

4.8 Scan and players’ characters

Since the design of our game is “cartoonish”, we had this idea that the characters used
by the players could be Funko Pop’s. So we had this idea to scan in 3D those figurines
and polish them in Blender, add bones and weight, animate them and then implement
them in Unity. Then each one of us would choose a figurine that we would scan. That
way we could have original characters for the players and we would learn a new technique.

To do so I first tried to take more than 30 photos of a figurine and then use this software
called Mushroom to create a 3D model. After a few tries with different numbers of pho-
tos, different lights, and backgrounds, it still did not work, I had nothing and the process
stopped before even creating a part of the model. I could not figure out why it was not
working. Maybe we did not have a camera good enough to have the quality needed by
this software.

So instead, after a lot of research, I found different smartphone applications that would
supposedly allow us to create a 3D model and with which we should not have any camera
issues. I tried two applications.

The first one was called display. land, and the goal was to film the object while moving
around it. After a lot of different tries, it was still not working. This time the process
was but the final product was not what we wanted, the model was flat and did not look
like the figurine, I still managed to model a stool but it seemed like the model we wanted
to model was too small Because when I tried to model something bigger it worked (the
final product was not perfect but we had something that we could have used).

The second application was called SCANN3D, and you had to take at least 20 photos
and the application would guide you with point of colors to take them. I tried a lot of
different ways to model the figurine, different lights (daylight, led, lamp,. . .), different
backgrounds (white, normal background, in a black box,. . .), different way to take the
pictures,. . . But it was still not working, the model created was looking weird and it had
modeled only the front of the figurine, there was no back and the shape was deformed.

Figure 24: 3D scan made by SCANN3D

44

Bartendu Project report 27/05/2020

Finally, we decided not to use 3D Scanning to create the players, we did not have the time
nor the equipment to create something that was good looking and working with the en-
vironment of the game and the other applications I found were rendering something worse.

So I decided to create a new character in Low poly using Blender, the same way I created
the ragdoll but with a “cartoonish” look, the players would have the possibility to choose
between different characters with different looks (different colors and hairstyles).

Figure 25: Player character

4.9 Last assets and improvements

Then it was time to create a few more assets that we needed for our game to be complete.

Those assets were:
— Mice that steal unsupervised food and ingredients
— More players with different styles
— Dirty Mojito’s glasses
— Dirty Cosmopolitan’s glasses
— Dirty Soft drinks’ glass
— A ladder (on the boat and as an independent asset)
— . . .
Some adjustments have also been made, for instance some scales have been modified and
size of some assets as well as some colors in order for our game to be better looking and
for our assets to better fit into the levels.

45

Bartendu Project report 27/05/2020

4.10 Conclusion on 3D modeling

To conclude, all the assets we needed for our game and we wanted have been made on
time, the specifications have been respected and the graphical/art part of the project is
now complete. Learning how to realize 3D modeling and Blender was really difficult but
I am really proud of the result and of the look of our game.

4.11 My experience in this project

This experience was definitely challenging but also very interesting. I was able to learn
new skills and improve those that I already had. I learned how to do 3D modeling and
how to work with a team on a project that big and long.

Being a part of “Les Cosmopolitains” was amazing, I had a lot of fun and the all team
was dedicated to this project.

We were well organized, and everyone respected the schedule whether it was for deadlines
or meetings.

Finally, I am really happy about what we did and hope that I will be able to work
again with Jean, Vincent and Emeline.

46

Bartendu Project report 27/05/2020

5 Emeline’s Achievements

5.1 Particle effects

Particle effects were quite tricky for me at first, as I had no experience on Unity. It took
me a lot of time to get used to using this tool. It was only after the second presentation
that I had achieved to make convincing-looking particle effects. Here is a comparison of
the fire effect between the first presentation and its current state in the game:

Figure 26: First presentation Figure 27: Last presentation

There was definitely a huge improvement in the way I made particle effects while I started
to fully understand all the parameters and options Unity had to offer. The one thing that
specifically helped improve the quality of the particles was to play around with their
textures and the materials. I would draw textures in Gimp and apply them to Particle
Systems, and repeat the same process over and over again until I was satisfied with the
results.

I did make other particle effects for the second defense, but no matter what I tried I
could not seem to manage to implement them in the actual project. These were the foam
effect and the boost effect.

The only other particle effect that made it into the project was the fire extinguisher
foam effect, which remained the same since the first presentation.

Figure 28: Fire extinguisher foam effect

47

Bartendu Project report 27/05/2020

5.2 Sea effect

It really is not much but it was still interesting to make: the sea effect for the Boat map.
We needed it to be opaque so that it would hide the hold of the ship. We also needed
it to be a plane so that it would not bother the rest of the gameplay, while also making
wave-like movements. Some very convenient tutorials found online helped make this sea,
which is a shader that was made with a script.

5.3 3D animations

I had to animate many different characters for the game; to name them, the customers,
the player characters, Mr.Insatiable and the Teacher.

Getting used to all the different shortcuts in Blender was difficult, but in the end it
worked out fine. Some other difficulties caused me a lot of trouble though, as I had a
hard time finding a way around them.

5.3.1 Customers

The customer animations were done for the previous defense. As a reminder, these ani-
mations were:
— Idle, for when the customers wait in line outside
— Walking, for when the customers enter the room and go to their seats
— Sitting down, when the customers reach their table
— Ordering, which happens when an order is sent on the board for orders
— Eating, which customers use once they are served
After making these customers animations, I got used to making animations and figuring
out how to portray all the movements that would be shown in the game. I did not need
to record myself doing these different movements anymore.

5.3.2 Mr.Insatiable

Mr.Insatiable is a special customer; therefore, he has only 3 animations. The first one is
called ”Sat”, it’s a looped animation of a single keyframe where Mr.Insatiable is only sat
at his table and not doing anything. Then he has the classic ”Ordering” and ”Eating”
animations that other customers have.

5.3.3 Player Characters

When Lou gave me the model she had made for the player characters, an unexpected
situation arose. What we had decided on was that Lou would take one of ragdolls I had
already animated, and change the shape of the ragdoll to make it look like a player; that
way, the armature would keep its animations and I would be able to reuse the animations
I had already made for the customers. However, when I would try to play the animations
on the player character, it would look very deformed and the movements looked awkward.
I tried to change the weights on the character, modify the rig a bit, but nothing would
work. So I ended up deleting the rig from the player character and making a brand new
one, and made the weights around it. I then copied the ”Walking” animation from the
customers onto the player. It still looked strange, so I changed the animation on the
player a bit to fix it.

48

Bartendu Project report 27/05/2020

After that I made a series of animations for the players:
— Idle, the player is not moving
— Walking
— Running, for when the player is boosted
— Grabbing, the player takes an object from a surface
— Putting down, the player puts an object on a surface or drops it onto the floor
— Cutting, the player cuts an ingredient
— Shaking, the player shakes the shaker
— Washing, the player washes the dishes

A few things are to be noted there:
1) The cutting, shaking, and washing animations were each seperated into 3 parts.

First, the player starts interacting with the object corresponding to the action; second,
the player perfoms the action, so this bit could be looped; finally, the player stops doing
the action.

2) For the idle, walking and running animations, a second version of them was made
so they are adapted to whether the player is holding an object or not.

5.3.4 The Teacher

The Teacher has his own animations since he’s a very specific character that only appears
in one level. The basic animation for this character makes him look like he is writing on
the classroom’s black board. Then two different animations can be triggered. The Teacher
is able to turn around during class to check if the students are behaving or not. He is
also able to feign turning around to scare the players; what I did was take the beginning
and the end of the ”Turning Around” animation, but instead of letting him turn all the
way around in the middle, I made him stop and only shake his head a bit while he looks
at the board. This was just a way of making the level a bit more fun.

5.3.5 Implementation

I then had to implement the animations in Unity. This is when a major issue arose,
which I did not expect. In older versions of Unity, you only had to export the FBX file
of your animated object from Blender, and once you dragged and dropped it into Unity,
you would have access to all the animations. But in my case, I would only have access
to the one animation that was playing in the Blender scene from which I had extracted
the FXB. I searched far and wide for a solution, and could not seem to find one. Until
one day I realized that I could mix together two things I had read about online. So what
I did was put all the keyframes of all the different animations end to end in the same
animation clip in Blender. I deleted all the other animations in this file, and exported
the FBX again. I then had one very long clip containing all my animations. All I had
to do was cut this clip under Unity according to the keyframes at which each animation
started and ended.

49

Bartendu Project report 27/05/2020

Once I had access to the animations, I could set the relations and the conditions un-
der which each animation would be triggered in the Animator Controller. It looked like
that for the player animations:

Figure 29: Player Animator Controller

After that, I had to look through the scripts of the game to find where to change the val-
ues of my conditions so that it would trigger the desired animation. It was complicated
at first, but thanks to the help of Vincent and Jean I got to understand the code enough
to implement the animations.

5.4 Tutorial and sound effects

Tutorial and sound effects, but mostly their lack thereof. I did not complete these tasks.
I did have some sounds recorded on my computer, but never ended up putting them in
the project. So they are basically non-existant in the game.

5.5 Personal experience

I learnt to use some software I had never used before and managed to get some un-
derstanding of Unity. This experience was definitely enriching and it highlighted some
personal issues I have, mostly concerning organization. I am very thankful for my group
mates and can only feel apologetic towards my group mates, as I did not complete my
tasks properly, which I was assigned at the beginning of the semester.

50

Bartendu Project report 27/05/2020

Conclusion

This project allowed us to learn to use many different tools and software that we may not
have used otherwise. It taught us to be more thorough and meticulous in our program-
ming while we kept trying to stabilize Bartendu. A lot of research was done on all ends,
as most of us had little to no experience in making video games. We improved our ability
to work in group, which will be very advantageous in our future projects, at EPITA but
also in our future careers.

Even if some things were not done or polished, we are still proud of the result. Some
of us might even continue working on the project during the holidays.

This is the end of the journey for Les Cosmopolitains.

Thank you for playing.

51

	Introduction
	Book of specifications follow-up
	Jean's Achievements
	The website
	Key steps of creation & features
	Latest updates
	Hosting and technical aspects
	Conclusion

	Music
	Music Creation
	In Unity: Audio Management
	General conclusion

	An additional feature: Discord Rich Presence
	Implementation
	Issues
	Conclusion

	Level Design & Level implementation
	Level 01: a simple kitchen with its restaurant
	The boat
	The classroom

	Story Writing
	Experience in the group

	Vincent's Achievements
	Introduction
	Base of the game and multiplayer
	Base of the game: Player controller
	Multiplayer: Spawning objects on the server
	Base of the game: Core mechanics

	Singleplayer
	Base of the game: Food properties and Food recipes
	Singleplayer: rewriting scripts and recreating prefabs
	Singleplayer: Cinematics
	Singleplayer: Scripting the gameplay
	Saving data

	AI and final touches
	AI: Basic actions
	AI: Brain
	Final touches: Customization and bug fixes

	UI work
	Small tasks
	Conclusion

	Lou's Achievements
	3D modeling : Introduction
	Blender
	First Assets
	Ragdoll to represent the customers
	Other Assets
	Assets specially made for some levels
	The boat
	Scan and players' characters
	Last assets and improvements
	Conclusion on 3D modeling
	My experience in this project

	Emeline's Achievements
	Particle effects
	Sea effect
	3D animations
	Customers
	Mr.Insatiable
	Player Characters
	The Teacher
	Implementation

	Tutorial and sound effects
	Personal experience

	Conclusion

